Skip to main content
Log in

Structural studies of metal ligand complexes by ion mobility-mass spectrometry

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

Collision cross sections (CCS) have been measured for three salen ligands, and their complexes with copper and zinc using travelling-wave ion mobility-mass spectrometry (TWIMS) and drift tube ion mobility-mass spectrometry (DTIMS), allowing a comparative size evaluation of the ligands and complexes. CCS measurements using TWIMS were determined using peptide and TAAH calibration standards. TWIMS measurements gave significantly larger CCS than DTIMS in helium, by 9 % for TAAH standards and 3 % for peptide standards, indicating that the choice of calibration standards is important in ensuring the accuracy of TWIMS-derived CCS measurements. Repeatability data for TWIMS was obtained for inter- and intra-day studies with mean RSDs of 1.1 % and 0.7 %, respectively. The CCS data obtained from IM-MS measurements are compared to CCS values obtained via the projection approximation, the exact hard spheres method and the trajectory method from X-ray coordinates and modelled structures using density functional theory (DFT) based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Creaser CS, Bramwell CJ, Noreen S, Hill CA, Thomas CL (2004) Analyst 129:984–994

    Article  CAS  Google Scholar 

  2. Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH (2004) Rapid Commun Mass Spectrom 18:2401–2414

    Article  CAS  Google Scholar 

  3. Scarff CA, Snelling JR, Knust MM, Wilkins CL, Scrivens JH (2012) J Am Chem Soc 134:9193–9198

    Article  CAS  Google Scholar 

  4. Wassvik C, Mortishire-Smith RJ, Tresadern G, Campuzano I, Claereboudt J (2011) Rapid Commun Mass Spectrom 25:3497–3503

    Article  Google Scholar 

  5. Campuzano I, Bush MF, Robinson CV, Beumont C, Richardson K, Kim H, Kim HI (2012) Anal Chem 84:1026–1033

    Article  CAS  Google Scholar 

  6. Scarff CA, Thalassinos K, Hilton GR, Scrivens JH (2008) Rapid Commun Mass Spectrom 22:3297–3304

    Article  CAS  Google Scholar 

  7. Thalassinos K, Grabenaur M, Slade SE, Hilton GR, Bowers MT, Scrivens JH (2009) Anal Chem 81:248–254

    Article  CAS  Google Scholar 

  8. Salbo R, Bush MF, Naver H, Campuzano I, Robinson CV, Pettersson I, Jørgensen TJD, Haselmann KF (2012) Rapid Commun Mass Spectrom 26:1181–1193

    Article  CAS  Google Scholar 

  9. Michaelevski I, Eisenstein M, Sharon M (2010) Anal Chem 82:9484–9491

    Article  CAS  Google Scholar 

  10. Atmanene C, Petiot-Bécard S, Zeyer D, Dorsselaer AV, Hannah VV, Sanlier-Cianférani S (2012) Anal Chem 84:4703–4710

    Article  CAS  Google Scholar 

  11. Knapman TW, Berryman JT, Campuzano I, Harris SA, Ashcroft AE (2010) Int J Mass Spectrom 298:17–23

    Article  CAS  Google Scholar 

  12. Williams JP, Bugarcic T, Habtemariam A, Giles K, Campuzano I, Rodger PM, Sadler PJ (2009) J Am Soc Mass Spectrom 20:1119–1122

    Article  CAS  Google Scholar 

  13. Williams JP, Lough JA, Campuzano I, Richardson K, Sadler PJ (2009) Rapid Commun Mass Spectrom 23:3563–3569

    Article  CAS  Google Scholar 

  14. Wyttenbach T, Batka JJ, Gidden J, Bowers MT (1999) Int J Mass Spectrom 193:143–152

    Article  CAS  Google Scholar 

  15. Wyttenbach T, Witt M, Bowers MT (2000) J Am Chem Soc 122:3458–3464

    Article  CAS  Google Scholar 

  16. Clowers BH, Hill HH Jr (2006) J Mass Spectrom 41:339–351

    Article  CAS  Google Scholar 

  17. Moision RM, Armentrout PB (2006) J Phys Chem A 2:3933–3946

    Article  Google Scholar 

  18. Taraszka JA, Li J, Clemmer DE (2000) J Phys Chem B 104:4545–4551

    Article  CAS  Google Scholar 

  19. Leavell MD, Gaucher SP, Leary JA, Taraszka JA, Clemmer DE (2002) J Am Soc Mass Spectrom 13:284–293

    Article  CAS  Google Scholar 

  20. Baker ES, Manard MJ, Gidden J, Bowers MT (2005) J Phys Chem B 109:4808–4810

    Google Scholar 

  21. Wyttenbach T, Liu DF, Bowers MT (2008) J Am Chem Soc 130:5993–6000

    Article  CAS  Google Scholar 

  22. Berezovskaya Y, Armstrong CT, Boyle AL, Porrini M, Woolfson DN, Barran PE (2011) Chem Commun 47:412–414

    Article  CAS  Google Scholar 

  23. Chepelin O, Ujma J, Barran PE, Lusby PJ (2012) Angew Chem Int 51:4194–4197

    Article  CAS  Google Scholar 

  24. Gidden J, Bowers MT, Jackson AT, Scrivens JH (2002) J Am Chem Soc 13:499–505

    CAS  Google Scholar 

  25. www.indiana.edu/~nano/Software/mobcal.txt

  26. Smith DP, Knapman TW, Campuzano I, Malham RW, Berryman JT, Radford SE, Ashcroft AE (2009) Eur J Mass Spectrom 15:113–130

    Article  CAS  Google Scholar 

  27. McCullough BJ, Kalapothakis J, Eastwood H, Kemper P, MacMillan D, Taylor K, Dorin J, Barran PE (2008) Anal Chem 80:6336–6344

    Article  CAS  Google Scholar 

  28. Von Helden G, Hsu MT, Gotts N, Bowers MT (1993) J Phys Chem 97:8182–8192

    Article  Google Scholar 

  29. Shvartsburg AA, Jarrold MF (1996) Chem Phys Lett 261:86–91

    Article  CAS  Google Scholar 

  30. Mesleh MF, Hunter JM, Shvartsburg AA, Schatz GC, Jarrold MF (1996) J Phys Chem 100:16082–16086

    Article  CAS  Google Scholar 

  31. Siu C, Guo Y, Saminathan IS, Hopkinson AC, Siu KWM (2010) J Phys Chem 114:1204–1212

    CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc, Wallingford

    Google Scholar 

  33. Valentine SJ, Conterman AE, Clemmer DE (1999) J Am Soc Mass Spectrom 10:1188–1211

    Article  CAS  Google Scholar 

  34. Jurneczko EJ, Kalapothakis J, Campuzano IDG, Morris M, Barran PE (2012) Anal Chem 84:8524–8531

    Article  CAS  Google Scholar 

  35. Morsa D, Gabelica V, De Pauw E (2011) Anal Chem 83:5775–5782

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Loughborough University for the award of a studentship to V.E.W and AstraZeneca for financial support. Research support from the ICIQ Foundation, Spanish Ministerio de Economia y Competitividad (MINECO grant CTQ2011-29054-C02-02) and the Generalitat de Catalunya (2009SGR-00259) is gratefully acknowledged. Waters and the BBSRC are acknowledged for the award of a strategic CASE studentship to E.J. The BMSS (British Mass Spectrometry Society) is thanked for proving the funds for a pipette puller enabling the nanospray experiments on the DTIMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin S. Creaser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 146 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, V.E., Castro-Gómez, F., Jurneczko, E. et al. Structural studies of metal ligand complexes by ion mobility-mass spectrometry. Int. J. Ion Mobil. Spec. 16, 61–67 (2013). https://doi.org/10.1007/s12127-013-0122-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-013-0122-8

Keywords

Navigation