Skip to main content
Log in

Probing ultrafast carrier dynamics, nonlinear absorption and refraction in core–shell silicon nanowires

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We investigate the relaxation dynamics of photogenerated carriers in silicon nanowires consisting of a crystalline core and a surrounding amorphous shell, using femtosecond time-resolved differential reflectivity and transmission spectroscopy at 3.15 eV and 1.57 eV photon energies. The complex behaviour of the differential transmission and reflectivity transients is the mixed contributions from the crystalline core and the amorphous silicon on the nanowire surface and the substrate where competing effects of state-filling and photoinduced absorption govern the carrier dynamics. Faster relaxation rates are observed on increasing the photogenerated carrier density. Independent experimental results on crystalline silicon-on-sapphire (SOS) help us in separating the contributions from the carrier dynamics in crystalline core and the amorphous regions in the nanowire samples. Further, single-beam z-scan nonlinear transmission experiments at 1.57 eV in both open- and close-aperture configurations yield two-photon absorption coefficient β (~3 cm/GW) and nonlinear refraction coefficient γ (–2.5 × 10 − 4 cm2/GW).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D D D Ma, C S Lee, F C K Au, S Y Tong and S T Lee, Science 299, 1874 (2003)

    Article  ADS  Google Scholar 

  2. Y Cui, Z Zhong, D Wang, W U Wang and C M Lieber, Nano Lett. 3, 149 (2003)

    Article  ADS  Google Scholar 

  3. P Servati, A Colli, S Hofmann, Y Q Fu, P Beecher, Z A K Durrani, A C Ferrari, A J Flewitt, J Robertson and W I Milne, Physica E38, 64 (2007)

    Article  Google Scholar 

  4. R Agarwal and C M Lieber, Appl. Phys. A85, 209 (2006)

    Article  Google Scholar 

  5. S T Picraux, S A Dayeh, P Manandhar, D E Perea and S G Choi, J. Mater. 62, 35 (2010)

    Google Scholar 

  6. L F Cui, R Ruffo, C K Chan, H Peng and Y Chui, Nano Lett. 9, 491 (2008)

    Article  ADS  Google Scholar 

  7. Y Dong, G Yu, M C McAlpine, W Lu and C M Lieber, Nano Lett. 8, 386 (2008)

    Article  ADS  Google Scholar 

  8. M Taguchi, K Kawamoto, S Tsuge, T Baba, H Sakata, M Morizane, K Uchihashi, N Nakamura, S Kiyama and O Oota, Prog. Photov oltaics 8, 503 (2000)

    Article  Google Scholar 

  9. M M Adachi, M P Anantram and K S Karim, Nano Lett. 10, 4093 (2010)

    Article  ADS  Google Scholar 

  10. R P Prasankumar, S Choi, S A Trugman, S T Picraux and A J Taylor, Nano Lett. 8, 1619 (2008)

    Article  ADS  Google Scholar 

  11. C-K Sun, S-Z Sun, K-H Lin, K Y-J Zhang, H-L Liu, S-C Liu and J-J Wu, Appl. Phys. Lett. 87, 023106 (2005)

    Article  ADS  Google Scholar 

  12. A Othonosa, E Lioudakis, U Philipose and H E Ruda, Appl. Phys. Lett. 91, 241113 (2007)

    Article  ADS  Google Scholar 

  13. C R Carey, Y Yu, M Kuno and G V Hartland, J. Phys. Chem. C113, 19077 (2009)

    Google Scholar 

  14. A Kar, P C Upadhya, S A Dayeh, S T Picraux, A J Taylor and R P Prasankumar, IEEE J. Sel. Top. Quant. Electron. 17, 889 (2011)

    Article  Google Scholar 

  15. V R Almeida, C A Barrios, R R Panepucci and M Lipson, Nature 43, 1081 (2004)

    Article  ADS  Google Scholar 

  16. J Qi, A M Belcher and J M White, Appl. Phys. Lett. 82, 2616 (2003)

    Article  ADS  Google Scholar 

  17. K P H Lui and F A Hegmann, J. Appl. Phys. 93, 9012 (2003)

    Article  ADS  Google Scholar 

  18. K P H Lui and F A Hegmann, Appl. Phys. Lett. 78, 3478 (2001)

    Article  ADS  Google Scholar 

  19. K Narayana and S F Preble, Opt. Exp. 18, 8998 (2010)

    Article  ADS  Google Scholar 

  20. J Kudrna, P Maly, F Trojanek, J Stepanek, T Lechner, I Pelant, J Meier and U Kroll, Mater. Sci. Eng. B69–70, 238 (2000)

    Article  Google Scholar 

  21. K Ikeda, Y Shen and Y Fainman, Opt. Exp. 15, 17761 (2007)

    Article  ADS  Google Scholar 

  22. R A Street, Appl. Phys. Lett. 41, 1060 (1982)

    Article  ADS  Google Scholar 

  23. M M Adachi, M P Anantram and K S Karim, Nano Lett. 10, 4093 (2010)

    Article  ADS  Google Scholar 

  24. S Kumar, M Anija, N Kamaraju, K S Vasu, K S Subrahmanyam, A K Sood and C N R Rao, Appl. Phys. Lett. 95, 191911 (2009)

    Article  ADS  Google Scholar 

  25. S Kumar, N Kamaraju, K S Vasu, A Nag, A K Sood and C N R Rao, Chem. Phys. Lett. 499, 152 (2010)

    Article  ADS  Google Scholar 

  26. M Dinu, F Quochi and H Garcia, Appl. Phys. Lett. 82, 2954 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SUNIL KUMAR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

KUMAR, S., KHORASANINEJAD, M., ADACHI, M.M. et al. Probing ultrafast carrier dynamics, nonlinear absorption and refraction in core–shell silicon nanowires. Pramana - J Phys 79, 471–481 (2012). https://doi.org/10.1007/s12043-012-0337-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-012-0337-y

Keywords

PACS Nos

Navigation