Skip to main content
Log in

Kondo effect and mesoscopic fluctuations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Two important themes in nanoscale physics in the last two decades are correlations between electrons and mesoscopic fluctuations. Here we review our recent work on the intersection of these two themes. The setting is the Kondo effect, a paradigmatic example of correlated electron physics, in a nanoscale system with mesoscopic fluctuations; in particular, we consider a small quantum dot coupled to a finite reservoir (which itself may be a large quantum dot). We discuss three aspects of this problem. First, in the high-temperature regime, we argue that a Kondo temperature T k which takes into account the mesoscopic fluctuations is a relevant concept: for instance, physical properties are universal functions of T/T k. Secondly, when the temperature is much less than the mean level spacing due to confinement, we characterize a natural cross-over from weak to strong coupling. This strong coupling regime is itself characterized by well-defined single-particle levels, as one can see from a Nozières Fermi-liquid theory argument. Finally, using a mean-field technique, we connect the mesoscopic fluctuations of the quasiparticles in the weak coupling regime to those at strong coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A C Hewson, The Kondo problem to heavy fermions (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  2. Éric Akkermans and Gilles Montambaux, Mesoscopic physics of electrons and photons (Cambdrige University Press, Cambdrige, 2007)

    Book  Google Scholar 

  3. L P Kouwenhoven, C M Marcus, P L McEuen, S Tarucha, R M Wetervelt and N S Wingreen, in: Mesoscopic electron transport edited by L L Sohn, G Schön and L P Kouwenhoven (Kluwer, Dordrecht, 1997) pp. 105–214

    Google Scholar 

  4. R K Kaul, D Ullmo, S Chandrasekharan and H U Baranger, Europhys. Lett. 71(6), 973 (2005)

    Article  ADS  Google Scholar 

  5. J Yoo, S Chandrasekharan, R K Kaul, D Ullmo and H U Baranger, Phys. Rev . B71, 201309(R) (2005)

    ADS  Google Scholar 

  6. R K Kaul, G Zaránd, S Chandrasekharan, D Ullmo and H U Baranger, Phys. Rev . Lett. 96, 176802 (2006)

    Article  ADS  Google Scholar 

  7. Ribhu K Kaul, Denis Ullmo, Gergely Zaránd, Shailesh Chandrasekharan and Harold U Baranger, Phys. Rev . B80(3), 035318 (2009)

    ADS  Google Scholar 

  8. Dong E Liu, Sébastien Burdin, Harold U Baranger and Denis Ullmo, arXiv:1106.5688, in preparation (2011)

  9. M Fowler and A Zawadowzki, Solid State Commun. 9, 471 (1971)

    Article  ADS  Google Scholar 

  10. P W Anderson, J. Phys. C: Solid State Phys. 3(12), 2436 (1970)

    Article  ADS  Google Scholar 

  11. A A Abrikosov, Physics 2, 5 (1965)

    Google Scholar 

  12. Kenneth G Wilson, Rev . Mod. Phys. 47(4), 773 (1975)

    Article  ADS  Google Scholar 

  13. N Andrei, Phys. Rev . Lett. 45(5), 379 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  14. P B Wiegmann, Sov . Phys. JETP Lett. 31, 392 (1980)

    Google Scholar 

  15. P Nozières, J. Low Temp. Phys. 17, 31 (1974)

    Article  ADS  Google Scholar 

  16. M Grobis, I G Rau, R M Potok and D Goldhaber-Gordon, in: Handbook of magnetism and adv anced magnetic materials edited by H Kronmüller and S Parkin (Wiley, 2007) Vol. 5, pp. 2703–2724, arXiv:cond-mat/0611480

  17. A M Chang and J C Chen, Rep. Prog. Phys. 72, 096501 (2009)

    Article  MathSciNet  Google Scholar 

  18. L I Glazman and M E Raikh, Pis’ma Zh. Eksp. Teor. Fiz. 47, 378 (1988); JETP Lett. 47 (1988) 452

    Google Scholar 

  19. Tai Kai Ng and Patrick A Lee, Phys. Rev . Lett. 61(15), 1768 (1988)

    Article  ADS  Google Scholar 

  20. D Goldhaber-Gordon, H Shtrikman, D Mahalu, D Abusch-Magder, U Meirav and M A Kastner, Nature 391, 156 (1998)

    Article  ADS  Google Scholar 

  21. G Zaránd and L Udvardi, Phys. Rev . B54(11), 7606 (1996)

    ADS  Google Scholar 

  22. A Crépieux and C Lacroix, Phys. Rev . B61(10), 6785 (2000)

    ADS  Google Scholar 

  23. Stefan Kettemann and Eduardo R Mucciolo, Phys. Rev . B75(18), 184407 (2007)

    ADS  Google Scholar 

  24. A Zhuravlev, I Zharekeshev, E Gorelov, A I Lichtenstein, E R Mucciolo and S Kettemann, Phys. Rev . Lett. 99(24), 247202 (2007)

    Article  ADS  Google Scholar 

  25. Denis Ullmo, Rep. Prog. Phys. 71, 026001 (2008)

    Article  MathSciNet  Google Scholar 

  26. Rainer Bedrich, Sébastien Burdin and Martina Hentschel, Phys. Rev . B81(17), 174406 (2010)

    ADS  Google Scholar 

  27. O Bohigas, in: Chaos and quantum physics edited by M J Giannoni, A Voros and J Jinn-Justin (North-Holland, Amsterdam, 1991) pp. 87–199

  28. Madan Lal Mehta, Random matrices, 2nd edn (Academic Press, London, 1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DENIS ULLMO.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ULLMO, D., BURDIN, S., LIU, D.E. et al. Kondo effect and mesoscopic fluctuations. Pramana - J Phys 77, 769–779 (2011). https://doi.org/10.1007/s12043-011-0191-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0191-3

Keywords

PACS

Navigation