Skip to main content

Advertisement

Log in

Is vertical migration in Antarctic krill (Euphausia superba) influenced by an underlying circadian rhythm?

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Antarctic krill (Euphausia superba) is a keystone species in the southern ocean ecosystem where it is the main consumer of phytoplankton and constitutes the main food item of many higher predators. Both food and predators are most abundant at the surface, thus krill hide in the depth of the ocean during the day and migrate to the upper layers at night, to feed at a time when the predatory risk is lowest. Although the functional significance of this diel vertical migration (DVM) is clear and its modulation by environmental factors has been described, the involvement of an endogenous circadian clock in this behaviour is as yet not fully resolved. We have analysed the circadian behaviour of Euphausia superba in a laboratory setting and here we present the first description of locomotor activity rhythms for this species. Our results are in agreement with the hypothesis that the circadian clock plays a key role in DVM. They also suggest that the interplay between food availability, social cues and the light:dark cycle acts as the predominant Zeitgeber for DVM in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ables J. G. 1974 Maximum entropy spectral analysis. Astron. Astrophys. Suppl. Ser. 15, 383–393.

    Google Scholar 

  • Aguzzi J., Company J. B. and Abello P. 2004 Locomotor activity rhythms of continental slope Nephrops norvegicus (Decapoda: Nephropidae). J. Crustacean Biol. 24, 282–290.

    Article  Google Scholar 

  • Bargmann H. E. 1937 The reproductive system of Euphausia superba. Discovery Rep. 14, 327–349.

    Google Scholar 

  • Buchholz F., Watkins J. L., Priddle J., Morris D. J. and Ricketts C. 1996 Moult in relation to some aspects of reproduction and growth in swarms of Antarctic krill, Euphausia superba. Mar. Biol. 127, 201–208.

    Article  Google Scholar 

  • Chatfield C. 1989 The analysis of time series: an introduction. Chapman and Hall, London.

    Google Scholar 

  • Cottier F. R., Tarling G. A., Wold G. A. and Falk Petersen S. 2006 Unsynchronized and synchronized vertical migration of zooplankton in a high arctic fjord. Limnol. Oceanogr. 51, 2586–2599.

    Google Scholar 

  • de la Iglesia H.O., Cambras T., Schwartz W. J. and Diez-Noguera A. 2004 Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Curr. Biol. 14, 796–800.

    Article  PubMed  CAS  Google Scholar 

  • Dowse H. B. 2007 Statistical analysis of biological rhythm data. In Circadian rhythms: methods and protocols (ed. E. Rosato), pp. 29–48. Humana Press, Totowa.

    Google Scholar 

  • Dowse H. B. 2008 Mid-range ultradian rhythms in Drosophila and the circadian clock problem. In Ultradian rhythmicity in biological systems: an inquiry into fundamental principles (ed. D.L. Lloyd and E. Rossi). Springer, Berlin (in Press).

    Google Scholar 

  • Dowse H. B. and Ringo J. 1987 Further evidence that the circadian clock in Drosophila is a population of coupled ultradian oscillators. J. Biol. Rhythms 2, 65–76.

    Article  PubMed  CAS  Google Scholar 

  • Dowse H. B. and Ringo J. M. 1989 The search for hidden periodicities in biological time series revisited. J. Theor. Biol. 139, 487–515.

    Article  Google Scholar 

  • Dowse H. B. and Palmer J. D. 1990 Evidence for ultradian rhythmicity in an intertidal crab. In Progress in clinical and biological research, Vol. 341B. Chronobiology: its role in clinical medicine, general biology and agriculture, Part B (ed. D. K. Hayes, R. Pauly and R. Reiter), pp. 691–697. Wiley Liss, New York.

    Google Scholar 

  • Everson I. 1982 Diurnal variations in mean volume backscattering strength of an Antarctic krill (Euphausia superba) patch. J. Plank. Res. 4, 155–162.

    Article  Google Scholar 

  • Everson I. 1983 Variations in vertical distribution and density of krill swarms in the vicinity of South Georgia. Mem. Natl. Inst. Polar Res. 27, 84–92.

    Google Scholar 

  • Fernández de Miguel F. and Aréchiga H. 1994 Circadian locomotor activity and its entrainment by food in the crayfish Procambarus clarkii. J. Exp. Biol. 190, 9–21.

    Google Scholar 

  • Fraser P. J. and Macdonald A. G. 1994 Crab hydrostatic pressure sensors. Nature 371, 383–384.

    Article  Google Scholar 

  • Frost B. W. 1988 Variability and possible adaptive significance of diel vertical migration in Calanus pacificus, a planktonic marine copepod. Bull. Mar. Sci. 43, 675–694.

    Google Scholar 

  • Forward R. B. 1988 Diel vertical migration: zooplankton photobiology and behaviour. Oceanogr. Mar. Biol. Annu. Rev. 26, 361–393.

    Google Scholar 

  • Gliwicz J. Z. 1986 Predation and the evolution of vertical migration in zooplankton. Nature 320, 746–747.

    Article  Google Scholar 

  • Godlewska M. 1996 Vertical migrations of krill (Euphausia superba Dana). Polish Arch. Hydrobiol. 43, 9–63.

    Google Scholar 

  • Hardy A. C. and Gunther E. R. 1935 The plankton of the South Georgia whaling grounds and adjacent waters, 1926–1927. Discovery Rep. 11, 1–456.

    Google Scholar 

  • Kay S. M. and Marple S. G. Jr 1981 Spectrum analysis, a modern perspective. IEEE Proc. 69, 1380–1419.

    Article  Google Scholar 

  • Kils U. 1981 The swimming behaviour, swimming performance and energy balance of Antarctic krill, Euphausia superba. BIOMASS Scient. Res. Ser. 3, 1–121.

    Google Scholar 

  • Levine J. D., Funes P., Dowse H. B. and Hall J. C. 2002a Signal analysis of behavioural and molecular cycles. BMC Neurosci. 3, 1–25.

    Article  PubMed  Google Scholar 

  • Levine J. D., Funes P., Dowse H. B. and Hall J. C. 2002b Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298, 2010–2012.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald A. G. 1997 Hydrostatic pressure as an environmental factor in life processes. Comp. Biochem. Phys. A 116, 291–297.

    Article  Google Scholar 

  • Mauchline J. and Fisher L. R. 1969 The biology of euphausiids. Adv. Mar. Biol. 7, 1–454.

    Article  Google Scholar 

  • Naylor E. 1958 Tidal and diurnal rhythms of locomotor activity in Carcinus maenas. J. Exp. Biol. 35, 602–610.

    Google Scholar 

  • Pearre S. Jr 2003 Eat and run? The hunger/satiation hypothesis in vertical migration: history, evidence and consequences. Biol. Rev. 78, 1–79.

    Article  PubMed  Google Scholar 

  • Pittendrigh C. S., Kyner W. T. and Takamura T. 1991 The amplitude of circadian oscillations: temperature dependence, latitudinal clines, and the photoperiodic time measurement. J. Biol. Rhythms 6, 299–313.

    Article  PubMed  CAS  Google Scholar 

  • Rieger D., Shafer O. T., Tomioka K. and Helfrich-Forster C. 2006 Functional analysis of circadian pacemaker neurons in Drosophila melanogaster. J. Neurosci. 26, 2531–2543.

    Article  PubMed  CAS  Google Scholar 

  • Ringelberg J. 1995 Changes in light intensity and diel vertical migration: a comparison of marine and freshwater environments. J. Mar. Biol. Assoc. UK 75, 15–25.

    Article  Google Scholar 

  • Roberts D. H., Lehár J. and Dreher J. 1987 Time series analysis with CLEAN. I. Derivation of a spectrum. Astron. J. 93, 968–989.

    Article  CAS  Google Scholar 

  • Rosato E. and Kyriakou C. P. 2006 Analysis of locomotor activity rhythms in Drosophila. Nat. Protoc. 1, 559–568.

    Article  PubMed  Google Scholar 

  • Strand S. W. and Hamner W. M. 1990 Schooling behavior of Antarctic krill (Euphausia superba) in laboratory aquaria: reactions to chemical and visual stimuli. Mar. Biol. 106, 355–359.

    Article  Google Scholar 

  • Tarling G. A. and Johnson M. L. 2006 Satiation gives krill that sinking feeling. Curr. Biol. 16, R173–R175.

    Article  CAS  Google Scholar 

  • Tarling G. A., Cuzin-Roudy J. and Buchholz F. 1999 Vertical migration behaviour in the northern krill Meganyctiphanes norvegica is influenced by moult and reproductive processes. Mar. Ecol. Prog. Ser. 190, 253–262.

    Article  Google Scholar 

  • Tarling G. A., Cuzin-Roudy J., Thorpe S., Shreeve R., Ward P. and Murphy E. 2007 Recruitment of Antarctic krill Euphausia superba in the South Georgia region: adult fecundity and the fate of larvae. Mar. Ecol. Prog. Ser. 331, 161–179.

    Article  Google Scholar 

  • van Oort B. E. H., Tyler N. J. C., Gerkema M. P., Folkow L., Schytte-Blix A. and Stokkan K. A. 2005 Circadian organization in reindeer. Nature 438, 1095–1096.

    Article  PubMed  CAS  Google Scholar 

  • Velsch J.-P. and Champalbert G. 1994 Swimming activity rhythms in Meganyctiphanes norvegica. C. R. Acad. Sci. Paris Sci. Vie 317, 857–862.

    Google Scholar 

  • Yoshii T., Funada Y., Ibuki-Ishibashi T., Matsumoto A., Tanimura T. and Tomioka K. 2004 Drosophila cryb mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light. J. Insect Physiol. 50, 479–488.

    Article  PubMed  CAS  Google Scholar 

  • Youngbluth M. J. 1975 The vertical distribution and diel migration of euphausiids in the central waters of the Eastern South Pacific. Deep-Sea Res. 22, 519–536.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edward Gaten or Ezio Rosato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaten, E., Tarling, G., Dowse, H. et al. Is vertical migration in Antarctic krill (Euphausia superba) influenced by an underlying circadian rhythm?. J Genet 87, 473–483 (2008). https://doi.org/10.1007/s12041-008-0070-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-008-0070-y

Keywords

Navigation