Skip to main content

Advertisement

Log in

Phenotypical and Pharmacological Characterization of Stem-Like Cells in Human Pituitary Adenomas

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The presence and functional role of tumor stem cells in benign tumors, and in human pituitary adenomas in particular, is a debated issue that still lacks a definitive formal demonstration. Fifty-six surgical specimens of human pituitary adenomas were processed to establish tumor stem-like cultures by selection and expansion in stem cell-permissive medium or isolating CD133-expressing cells. Phenotypic and functional characterization of these cells was performed (1) ex vivo, by immunohistochemistry analysis on paraffin-embedded tissues; (2) in vitro, attesting marker expression, proliferation, self-renewal, differentiation, and drug sensitivity; and (3) in vivo, using a zebrafish model. Within pituitary adenomas, we identified rare cell populations expressing stem cell markers but not pituitary hormones; we isolated and expanded in vitro these cells, obtaining fibroblast-free, stem-like cultures from 38 pituitary adenoma samples. These cells grow as spheroids, express stem cell markers (Oct4, Sox2, CD133, and nestin), show sustained in vitro proliferation as compared to primary cultures of differentiated pituitary adenoma cells, and are able to differentiate in hormone-expressing pituitary cells. Besides, pituisphere cells, apparently not tumorigenic in mice, engrafted in zebrafish embryos, inducing pro-angiogenic and invasive responses. Finally, pituitary adenoma stem-like cells express regulatory pituitary receptors (D2R, SSTR2, and SSTR5), whose activation by a dopamine/somatostatin chimeric agonist exerts antiproliferative effects. In conclusion, we provide evidence that human pituitary adenomas contain a subpopulation fulfilling biological and phenotypical signatures of tumor stem cells that may represent novel therapeutic targets for therapy-resistant tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Florio T, Barbieri F (2012) The status of the art of human malignant glioma management: the promising role of targeting tumor-initiating cells. Drug Discov Today 17(19–20):1103–1110. doi:10.1016/j.drudis.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  2. Adorno-Cruz V, Kibria G, Liu X, Doherty M, Junk DJ, Guan D, Hubert C, Venere M et al (2015) Cancer stem cells: targeting the roots of cancer, seeds of metastasis, and sources of therapy resistance. Cancer Res 75(6):924–929. doi:10.1158/0008-5472.CAN-14-3225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sell S (2005) Leukemia: stem cells, maturation arrest, and differentiation therapy. Stem Cell Rev 1(3):197–205. doi:10.1385/SCR:1:3:197

    Article  CAS  PubMed  Google Scholar 

  4. Skibinski A, Kuperwasser C (2015) The origin of breast tumor heterogeneity. Oncogene 34:5309–5316. doi:10.1038/onc.2014.475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Melmed S (2011) Pathogenesis of pituitary tumors. Nat Rev Endocrinol 7(5):257–266

    Article  CAS  PubMed  Google Scholar 

  6. Holdaway IM, Rajasoorya RC, Gamble GD (2004) Factors influencing mortality in acromegaly. J Clin Endocrinol Metab 89(2):667–674. doi:10.1210/jc.2003-031199

    Article  CAS  PubMed  Google Scholar 

  7. Levy A (2002) Physiological implications of pituitary trophic activity. J Endocrinol 174(2):147–155

    Article  CAS  PubMed  Google Scholar 

  8. Florio T (2011) Adult pituitary stem cells: from pituitary plasticity to adenoma development. Neuroendocrinology 94(4):265–277. doi:10.1159/000330857

    Article  CAS  PubMed  Google Scholar 

  9. Garcia-Lavandeira M, Diaz-Rodriguez E, Bahar D, Garcia-Rendueles AR, Rodrigues JS, Dieguez C, Alvarez CV (2015) Pituitary cell turnover: from adult stem cell recruitment through differentiation to death. Neuroendocrinology 101(3):175–192. doi:10.1159/000375502

    Article  CAS  PubMed  Google Scholar 

  10. Garcia-Lavandeira M, Quereda V, Flores I, Saez C, Diaz-Rodriguez E, Japon MA, Ryan AK, Blasco MA et al (2009) A GRFa2/Prop1/stem (GPS) cell niche in the pituitary. PLoS One 4(3):e4815

    Article  PubMed  PubMed Central  Google Scholar 

  11. Garcia-Lavandeira M, Saez C, Diaz-Rodriguez E, Perez-Romero S, Senra A, Dieguez C, Japon MA, Alvarez CV (2012) Craniopharyngiomas express embryonic stem cell markers (SOX2, OCT4, KLF4, and SOX9) as pituitary stem cells but do not coexpress RET/GFRA3 receptors. J Clin Endocrinol Metab 97(1):E80–E87. doi:10.1210/jc.2011-2187

    Article  CAS  PubMed  Google Scholar 

  12. Florio T (2014) Adult pituitary stem cells. In: Tursken K (ed) Adult stem cells. 2nd Edition, Humana Press-Springer, NYC, pp 91–109. doi:10.1007/978-1-4614-9569-7_5

  13. Rizzoti K, Akiyama H, Lovell-Badge R (2013) Mobilized adult pituitary stem cells contribute to endocrine regeneration in response to physiological demand. Cell Stem Cell 13(4):419–432. doi:10.1016/j.stem.2013.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Castinetti F, Davis SW, Brue T, Camper SA (2011) Pituitary stem cell update and potential implications for treating hypopituitarism. Endocr Rev 32(4):453–471. doi:10.1210/er.2010-0011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu X, Tollkuhn J, Taylor H, Rosenfeld MG (2015) Notch-dependent pituitary SOX2(+) stem cells exhibit a timed functional extinction in regulation of the postnatal gland. Stem Cell Reports 5(6):1196–1209. doi:10.1016/j.stemcr.2015.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andoniadou CL, Matsushima D, Mousavy Gharavy SN, Signore M, Mackintosh AI, Schaeffer M, Gaston-Massuet C, Mollard P et al (2013) Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell 13(4):433–445. doi:10.1016/j.stem.2013.07.004

    Article  CAS  PubMed  Google Scholar 

  17. Barbieri F, Bajetto A, Stumm R, Pattarozzi A, Porcile C, Zona G, Dorcaratto A, Ravetti JL et al (2008) Overexpression of stromal cell-derived factor 1 and its receptor CXCR4 induces autocrine/paracrine cell proliferation in human pituitary adenomas. Clin Cancer Res 14(16):5022–5032

    Article  CAS  PubMed  Google Scholar 

  18. Rostene W, Guyon A, Kular L, Godefroy D, Barbieri F, Bajetto A, Banisadr G, Callewaere C et al (2011) Chemokines and chemokine receptors: new actors in neuroendocrine regulations. Front Neuroendocrinol 32(1):10–24

    Article  CAS  PubMed  Google Scholar 

  19. Barbero S, Bonavia R, Bajetto A, Porcile C, Pirani P, Ravetti JL, Zona GL, Spaziante R et al (2003) Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res 63(8):1969–1974

    CAS  PubMed  Google Scholar 

  20. Porcile C, Bajetto A, Barbieri F, Barbero S, Bonavia R, Biglieri M, Pirani P, Florio T et al (2005) Stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation. Exp Cell Res 308(2):241–253. doi:10.1016/j.yexcr.2005.04.024

    Article  CAS  PubMed  Google Scholar 

  21. Barbieri F, Bajetto A, Porcile C, Pattarozzi A, Schettini G, Florio T (2007) Role of stromal cell-derived factor 1 (SDF1/CXCL12) in regulating anterior pituitary function. J Mol Endocrinol 38(3):383–389

    Article  CAS  PubMed  Google Scholar 

  22. Florio T, Casagrande S, Diana F, Bajetto A, Porcile C, Zona G, Thellung S, Arena S et al (2006) Chemokine stromal cell-derived factor 1alpha induces proliferation and growth hormone release in GH4C1 rat pituitary adenoma cell line through multiple intracellular signals. Mol Pharmacol 69(2):539–546

    Article  CAS  PubMed  Google Scholar 

  23. Massa A, Casagrande S, Bajetto A, Porcile C, Barbieri F, Thellung S, Arena S, Pattarozzi A et al (2006) SDF-1 controls pituitary cell proliferation through the activation of ERK1/2 and the Ca2+-dependent, cytosolic tyrosine kinase Pyk2. Ann N Y Acad Sci 1090:385–398. doi:10.1196/annals.1378.042

    Article  CAS  PubMed  Google Scholar 

  24. Mathioudakis N, Sundaresh R, Larsen A, Ruff W, Schiller J, Guerrero-Cazares H, Burger P, Salvatori R et al (2015) Expression of the pituitary stem/progenitor marker GFRalpha2 in human pituitary adenomas and normal pituitary. Pituitary 18(1):31–41. doi:10.1007/s11102-014-0553-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Soeda A, Inagaki A, Oka N, Ikegame Y, Aoki H, Yoshimura S, Nakashima S, Kunisada T et al (2008) Epidermal growth factor plays a crucial role in mitogenic regulation of human brain tumor stem cells. J Biol Chem 283(16):10958–10966. doi:10.1074/jbc.M704205200

    Article  CAS  PubMed  Google Scholar 

  26. Xu Q, Yuan X, Tunici P, Liu G, Fan X, Xu M, Hu J, Hwang JY et al (2009) Isolation of tumour stem-like cells from benign tumours. Br J Cancer 101(2):303–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen L, Ye H, Wang X, Tang X, Mao Y, Zhao Y, Wu Z, Mao XO et al (2014) Evidence of brain tumor stem progenitor-like cells with low proliferative capacity in human benign pituitary adenoma. Cancer Lett 349(1):61–66. doi:10.1016/j.canlet.2014.03.031

    Article  CAS  PubMed  Google Scholar 

  28. Orciani M, Davis S, Appolloni G, Lazzarini R, Mattioli-Belmonte M, Ricciuti RA, Boscaro M, Di Primio R et al (2015) Isolation and characterization of progenitor mesenchymal cells in human pituitary tumors. Cancer Gene Ther 22(1):9–16. doi:10.1038/cgt.2014.63

    Article  CAS  PubMed  Google Scholar 

  29. Mertens FM, Gremeaux L, Chen J, Fu Q, Willems C, Roose H, Govaere O, Roskams T et al (2015) Pituitary tumors contain a side population with tumor stem cell-associated characteristics. Endocr Relat Cancer 22(4):481–504. doi:10.1530/ERC-14-0546

    Article  CAS  PubMed  Google Scholar 

  30. Donangelo I, Ren SG, Eigler T, Svendsen C, Melmed S (2014) Sca1(+) murine pituitary adenoma cells show tumor-growth advantage. Endocr Relat Cancer 21(2):203–216. doi:10.1530/ERC-13-0229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Florio T, Barbieri F, Spaziante R, Zona G, Hofland LJ, van Koetsveld PM, Feelders RA, Stalla GK et al (2008) Efficacy of a dopamine-somatostatin chimeric molecule, BIM-23A760, in the control of cell growth from primary cultures of human non-functioning pituitary adenomas: a multi-center study. Endocr Relat Cancer 15(2):583–596

    Article  CAS  PubMed  Google Scholar 

  32. Bajetto A, Porcile C, Pattarozzi A, Scotti L, Aceto A, Daga A, Barbieri F, Florio T (2013) Differential role of EGF and BFGF in human GBM-TIC proliferation: relationship to EGFR-tyrosine kinase inhibitor sensibility. J Biol Regul Homeost Agents 27(1):143–154

    CAS  PubMed  Google Scholar 

  33. Bajetto A, Barbieri F, Pattarozzi A, Dorcaratto A, Porcile C, Ravetti JL, Zona G, Spaziante R et al (2007) CXCR4 and SDF1 expression in human meningiomas: a proliferative role in tumoral meningothelial cells in vitro. Neuro-Oncology 9(1):3–11. doi:10.1215/15228517-2006-023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wurth R, Barbieri F, Bajetto A, Pattarozzi A, Gatti M, Porcile C, Zona G, Ravetti JL et al (2011) Expression of CXCR7 chemokine receptor in human meningioma cells and in intratumoral microvasculature. J Neuroimmunol 234(1–2):115–123. doi:10.1016/j.jneuroim.2011.01.006

    Article  PubMed  Google Scholar 

  35. Gatti M, Pattarozzi A, Bajetto A, Wurth R, Daga A, Fiaschi P, Zona G, Florio T et al (2013) Inhibition of CXCL12/CXCR4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity. Toxicology 314(2–3):209–220. doi:10.1016/j.tox.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  36. Gritti M, Wurth R, Angelini M, Barbieri F, Peretti M, Pizzi E, Pattarozzi A, Carra E et al (2014) Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current. Oncotarget 5(22):11252–11268

    Article  PubMed  PubMed Central  Google Scholar 

  37. Griffero F, Daga A, Marubbi D, Capra MC, Melotti A, Pattarozzi A, Gatti M, Bajetto A et al (2009) Different response of human glioma tumor-initiating cells to epidermal growth factor receptor kinase inhibitors. J Biol Chem 284(11):7138–7148. doi:10.1074/jbc.M807111200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310. doi:10.1002/aja.1002030302

    Article  CAS  PubMed  Google Scholar 

  39. Nicoli S, Presta M (2007) The zebrafish/tumor xenograft angiogenesis assay. Nat Protoc 2(11):2918–2923. doi:10.1038/nprot.2007.412

    Article  CAS  PubMed  Google Scholar 

  40. Vitale G, Gaudenzi G, Dicitore A, Cotelli F, Ferone D, Persani L (2014) Zebrafish as an innovative model for neuroendocrine tumors. Endocr Relat Cancer 21(1):R67–R83. doi:10.1530/ERC-13-0388

    Article  CAS  PubMed  Google Scholar 

  41. Tobia C, Gariano G, De Sena G, Presta M (2013) Zebrafish embryo as a tool to study tumor/endothelial cell cross-talk. Biochim Biophys Acta 1832(9):1371–1377. doi:10.1016/j.bbadis.2013.01.016

    Article  CAS  PubMed  Google Scholar 

  42. Perez-Millan MI, Berner SI, Luque GM, De Bonis C, Sevlever G, Becu-Villalobos D, Cristina C (2013) Enhanced nestin expression and small blood vessels in human pituitary adenomas. Pituitary 16(3):303–310. doi:10.1007/s11102-012-0421-9

    Article  CAS  PubMed  Google Scholar 

  43. Chen J, Gremeaux L, Fu Q, Liekens D, Van Laere S, Vankelecom H (2009) Pituitary progenitor cells tracked down by side population dissection. Stem Cells (Dayton, Ohio) 27(5):1182–1195

    Article  CAS  Google Scholar 

  44. Krylyshkina O, Chen J, Mebis L, Denef C, Vankelecom H (2005) Nestin-immunoreactive cells in rat pituitary are neither hormonal nor typical folliculo-stellate cells. Endocrinology 146(5):2376–2387

    Article  CAS  PubMed  Google Scholar 

  45. Barbieri F, Thellung S, Wurth R, Gatto F, Corsaro A, Villa V, Nizzari M, Albertelli M et al (2014) Emerging targets in pituitary adenomas: role of the CXCL12/CXCR4-R7 system. Int J Endocrinol 2014:753524. doi:10.1155/2014/753524

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xing B, Kong YG, Yao Y, Lian W, Wang RZ, Ren ZY (2013) Study on the expression levels of CXCR4, CXCL12, CD44, and CD147 and their potential correlation with invasive behaviors of pituitary adenomas. Biomed Environ Sci 26(7):592–598. doi:10.3967/0895-3988.2013.07.011

    CAS  PubMed  Google Scholar 

  47. de Moraes DC, Vaisman M, Conceicao FL, Ortiga-Carvalho TM (2012) Pituitary development: a complex, temporal regulated process dependent on specific transcriptional factors. J Endocrinol 215(2):239–245. doi:10.1530/JOE-12-0229

    Article  PubMed  Google Scholar 

  48. Hsieh YC, Intawicha P, Lee KH, Chiu YT, Lo NW, Ju JC (2011) LIF and FGF cooperatively support stemness of rabbit embryonic stem cells derived from parthenogenetically activated embryos. Cell Reprogram 13(3):241–255. doi:10.1089/cell.2010.0097

    Article  CAS  PubMed  Google Scholar 

  49. Hofland LJ, Lamberts SW (1999) Pituitary gland tumors. Masters JRW, Palsson B (eds) Human Cell Culture: Cancer Cell Lines Part 1. Springer Netherlands, pp 149–159. doi:10.1007/0-306-46872-7_8

  50. Rich JN, Eyler CE (2008) Cancer stem cells in brain tumor biology. Cold Spring Harb Symp Quant Biol 73:411–420

    Article  CAS  PubMed  Google Scholar 

  51. Florio T, Thellung S, Arena S, Corsaro A, Spaziante R, Gussoni G, Acuto G, Giusti M et al (1999) Somatostatin and its analog lanreotide inhibit the proliferation of dispersed human non-functioning pituitary adenoma cells in vitro. Eur J Endocrinol 141(4):396–408

    Article  CAS  PubMed  Google Scholar 

  52. Florio T, Thellung S, Corsaro A, Bocca L, Arena S, Pattarozzi A, Villa V, Massa A et al (2003) Characterization of the intracellular mechanisms mediating somatostatin and lanreotide inhibition of DNA synthesis and growth hormone release from dispersed human GH-secreting pituitary adenoma cells in vitro. Clin Endocrinol 59(1):115–128

    Article  CAS  Google Scholar 

  53. Barbieri F, Thellung S, Ratto A, Carra E, Marini V, Fucile C, Bajetto A, Pattarozzi A et al (2015) In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translational implications for human tumors. BMC Cancer 15:228. doi:10.1186/s12885-015-1235-8

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kastelan D, Korsic M (2007) High prevalence rate of pituitary incidentaloma: is it associated with the age-related decline of the sex hormones levels? Med Hypotheses 69(2):307–309. doi:10.1016/j.mehy.2006.11.044

    Article  CAS  PubMed  Google Scholar 

  55. Gaudenzi G, Albertelli M, Dicitore A, Würth R, Gatto F, Barbieri F, Cotelli F, Florio T et al (2016) Patient-derived xenograft in zebrafish embryos: a new platform for translational research in neuroendocrine tumors. Endocrine. doi:10.1007/s12020-016-1048-9

  56. Florio T, Pan MG, Newman B, Hershberger RE, Civelli O, Stork PJ (1992) Dopaminergic inhibition of DNA synthesis in pituitary tumor cells is associated with phosphotyrosine phosphatase activity. J Biol Chem 267(34):24169–24172

    CAS  PubMed  Google Scholar 

  57. Pan MG, Florio T, Stork PJ (1992) G protein activation of a hormone-stimulated phosphatase in human tumor cells. Science (New York, NY) 256(5060):1215–1217

    Article  CAS  Google Scholar 

  58. Florio T (2008) Somatostatin/somatostatin receptor signalling: phosphotyrosine phosphatases. Mol Cell Endocrinol 286(1–2):40–48. doi:10.1016/j.mce.2007.08.012

    Article  CAS  PubMed  Google Scholar 

  59. Saveanu A, Jaquet P (2009) Somatostatin-dopamine ligands in the treatment of pituitary adenomas. Rev Endocr Metab Disord 10(2):83–90. doi:10.1007/s11154-008-9086-0

    Article  CAS  PubMed  Google Scholar 

  60. Yunoue S, Arita K, Kawano H, Uchida H, Tokimura H, Hirano H (2011) Identification of CD133+ cells in pituitary adenomas. Neuroendocrinology 94(4):302–312. doi:10.1159/000330625

    Article  CAS  PubMed  Google Scholar 

  61. Leung SW, Wloga EH, Castro AF, Nguyen T, Bronson RT, Yamasaki L (2004) A dynamic switch in Rb+/− mediated neuroendocrine tumorigenesis. Oncogene 23(19):3296–3307. doi:10.1038/sj.onc.1207457

    Article  CAS  PubMed  Google Scholar 

  62. Nicoli S, Ribatti D, Cotelli F, Presta M (2007) Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res 67(7):2927–2931. doi:10.1158/0008-5472.Can-06-4268

    Article  CAS  PubMed  Google Scholar 

  63. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138(4):645–659. doi:10.1016/j.cell.2009.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Carra E, Barbieri F, Marubbi D, Pattarozzi A, Favoni RE, Florio T, Daga A (2013) Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures. Cell Cycle 12(3):491–500. doi:10.4161/cc.23372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alexandraki KI, Munayem Khan M, Chahal HS, Dalantaeva NS, Trivellin G, Berney DM, Caron P, Popovic V et al (2012) Oncogene-induced senescence in pituitary adenomas and carcinomas. Hormones (Athens) 11(3):297–307

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to M. Culler (Ipsen Inc.) for providing us with BIM-23A760, and to Dr. E. Mannino for her contribution in the early phases of the study. This work was supported by grants from the Italian Association for Cancer Research (AIRC) to TF and the Italian Ministry of University and Research (FIRB RBAP11884M) to GV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tullio Florio.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Roberto Würth and Federica Barbieri contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 309 kb)

ESM 2

(PDF 3103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Würth, R., Barbieri, F., Pattarozzi, A. et al. Phenotypical and Pharmacological Characterization of Stem-Like Cells in Human Pituitary Adenomas. Mol Neurobiol 54, 4879–4895 (2017). https://doi.org/10.1007/s12035-016-0025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0025-x

Keywords

Navigation