Skip to main content
Log in

Zebrafish diras1 Promoted Neurite Outgrowth in Neuro-2a Cells and Maintained Trigeminal Ganglion Neurons In Vivo via Rac1-Dependent Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The small GTPase Ras superfamily regulates several neuronal functions including neurite outgrowth and neuron proliferation. In this study, zebrafish diras1a and diras1b were identified and were found to be mainly expressed in the central nervous system and dorsal neuron ganglion. Overexpression of green fluorescent protein (GFP)-diras1a or GFP-diras1b triggered neurite outgrowth of Neuro-2a cells. The wild types, but not the C terminus truncated forms, of diras1a and diras1b elevated the protein level of Ras-related C3 botulinum toxin substrate 1 (Rac1) and downregulated Ras homologous member A (RhoA) expression. Glutathione S-transferase (GST) pull-down assay also revealed that diras1a and diras1b enhanced Rac1 activity. Interfering with Rac1, Pak1, or cyclin-dependent kinase 5 (CDK5) activity or with the Arp2/3 inhibitor prevented diras1a and diras1b from mediating the neurite outgrowth effects. In the zebrafish model, knockdown of diras1a and/or diras1b by morpholino antisense oligonucleotides not only reduced axon guidance but also caused the loss of trigeminal ganglion without affecting the precursor markers, such as ngn1 and neuroD. Co-injection with messenger RNA (mRNA) derived from mouse diras1 or constitutively active human Rac1 restored the population of trigeminal ganglion. In conclusion, we provided preliminary evidence that diras1 is involved in neurite outgrowth and maintains the number of trigeminal ganglions through the Rac1-dependent pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Colicelli J (2004) Human RAS superfamily proteins and related GTPases. Sci STKE 2004:RE13

    PubMed  PubMed Central  Google Scholar 

  2. Mitin N, Rossman KL, Der CJ (2005) Signaling interplay in Ras superfamily function. Curr Biol 15:R563–R574

    Article  CAS  PubMed  Google Scholar 

  3. Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118:843–846

    Article  CAS  PubMed  Google Scholar 

  4. Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127

    Article  CAS  PubMed  Google Scholar 

  5. Ellis CA, Vos MD, Howell H, Vallecorsa T, Fults DW et al (2002) Rig is a novel Ras-related protein and potential neural tumor suppressor. Proc Natl Acad Sci U S A 99:9876–9881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fukata M, Kaibuchi K (2001) Rho-family GTPases in cadherin-mediated cell-cell adhesion. Nat Rev Mol Cell Biol 2:887–897

    Article  CAS  PubMed  Google Scholar 

  7. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  CAS  PubMed  Google Scholar 

  8. Luo L (2000) Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 1:173–180

    Article  CAS  PubMed  Google Scholar 

  9. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410

    Article  CAS  PubMed  Google Scholar 

  10. Nobes CD, Hall A (1995) Rho, Rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    Article  CAS  PubMed  Google Scholar 

  11. Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    Article  CAS  PubMed  Google Scholar 

  12. Olenik C, Barth H, Just I, Aktories K, Meyer DK (1997) Gene expression of the small GTP-binding proteins RhoA, RhoB, Rac1, and Cdc42 in adult rat brain. Brain Res Mol Brain Res 52:263–269

    Article  CAS  PubMed  Google Scholar 

  13. Albertinazzi C, Gilardelli D, Paris S, Longhi R, de Curtis I (1998) Overexpression of a neural-specific rho family GTPase, cRac1B, selectively induces enhanced neuritogenesis and neurite branching in primary neurons. J Cell Biol 142:815–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brown MD, Cornejo BJ, Kuhn TB, Bamburg JR (2000) Cdc42 stimulates neurite outgrowth and formation of growth cone filopodia and lamellipodia. J Neurobiol 43:352–364

    Article  CAS  PubMed  Google Scholar 

  15. Yamashita T, Tucker KL, Barde YA (1999) Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron 24:585–593

    Article  CAS  PubMed  Google Scholar 

  16. Kontani K, Tada M, Ogawa T, Okai T, Saito K et al (2002) Di-Ras, a distinct subgroup of ras family GTPases with unique biochemical properties. J Biol Chem 277:41070–41078

    Article  CAS  PubMed  Google Scholar 

  17. Tada M, Gengyo-Ando K, Kobayashi T, Fukuyama M, Mitani S et al (2012) Neuronally expressed Ras-family GTPase Di-Ras modulates synaptic activity in Caenorhabditis elegans. Genes Cells 17:778–789

    Article  CAS  PubMed  Google Scholar 

  18. Westerfield M, Doerry E, Kirkpatrick AE, Douglas SA (1999) Zebrafish informatics and the ZFIN database. Methods Cell Biol 60:339–355

    Article  CAS  PubMed  Google Scholar 

  19. Westerfield M, Doerry E, Kirkpatrick AE, Driever W, Douglas SA (1997) An on-line database for zebrafish development and genetics research. Semin Cell Dev Biol 8:477–488

    Article  CAS  PubMed  Google Scholar 

  20. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  CAS  PubMed  Google Scholar 

  21. Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3:59–69

    Article  CAS  PubMed  Google Scholar 

  22. Hsu LS, Tseng CY (2010) Zebrafish calcium/calmodulin-dependent protein kinase II (cam-kii) inhibitors: expression patterns and their roles in zebrafish brain development. Dev Dyn 239:3098–3105

    Article  CAS  PubMed  Google Scholar 

  23. Hsu LS, Liang CJ, Tseng CY, Yeh CW, Tsai JN (2011) Zebrafish cyclin-dependent protein kinase–like 1 (zcdkl1): identification and functional characterization. Int J Mol Sci 12:3606–3617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schmidt A, Hall A (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 16:1587–1609

    Article  CAS  PubMed  Google Scholar 

  25. Auer M, Hausott B, Klimaschewski L (2011) Rho GTPases as regulators of morphological neuroplasticity. Ann Anat 193:259–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Manser E, Chong C, Zhao ZS, Leung T, Michael G et al (1995) Molecular cloning of a new member of the p21-Cdc42/Rac-activated kinase (PAK) family. J Biol Chem 270:25070–25078

    Article  CAS  PubMed  Google Scholar 

  27. Bokoch GM (2003) Biology of the p21-activated kinases. Annu Rev Biochem 72:743–781

    Article  CAS  PubMed  Google Scholar 

  28. Kesavapany S, Li BS, Pant HC (2003) Cyclin-dependent kinase 5 in neurofilament function and regulation. Neurosignals 12:252–264

    Article  CAS  PubMed  Google Scholar 

  29. Nikolic M, Chou MM, Lu W, Mayer BJ, Tsai LH (1998) The p35/Cdk5 kinase is a neuron-specific Rac effector that inhibits Pak1 activity. Nature 395:194–198

    Article  CAS  PubMed  Google Scholar 

  30. Kreis P, Barnier JV (2009) PAK signalling in neuronal physiology. Cell Signal 21:384–393

    Article  CAS  PubMed  Google Scholar 

  31. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    Article  CAS  PubMed  Google Scholar 

  32. Stradal TE, Scita G (2006) Protein complexes regulating Arp2/3-mediated actin assembly. Curr Opin Cell Biol 18:4–10

    Article  CAS  PubMed  Google Scholar 

  33. Tahirovic S, Hellal F, Neukirchen D, Hindges R, Garvalov BK et al (2010) Rac1 regulates neuronal polarization through the WAVE complex. J Neurosci 30:6930–6943

    Article  CAS  PubMed  Google Scholar 

  34. Knaut H, Blader P, Strahle U, Schier AF (2005) Assembly of trigeminal sensory ganglia by chemokine signaling. Neuron 47:653–666

    Article  CAS  PubMed  Google Scholar 

  35. Oxford G, Theodorescu D (2003) Ras superfamily monomeric G proteins in carcinoma cell motility. Cancer Lett 189:117–128

    Article  CAS  PubMed  Google Scholar 

  36. Cheever TR, Ervasti JM (2013) Actin isoforms in neuronal development and function. Int Rev Cell Mol Biol 301:157–213

    Article  CAS  PubMed  Google Scholar 

  37. Govek EE, Newey SE, Van Aelst L (2005) The role of the Rho GTPases in neuronal development. Genes Dev 19:1–49

    Article  CAS  PubMed  Google Scholar 

  38. Aoki K, Nakamura T, Matsuda M (2004) Spatio-temporal regulation of Rac1 and Cdc42 activity during nerve growth factor-induced neurite outgrowth in PC12 cells. J Biol Chem 279:713–719

    Article  CAS  PubMed  Google Scholar 

  39. Sarner S, Kozma R, Ahmed S, Lim L (2000) Phosphatidylinositol 3-kinase, Cdc42, and Rac1 act downstream of Ras in integrin-dependent neurite outgrowth in N1E-115 neuroblastoma cells. Mol Cell Biol 20:158–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Luo L, Liao YJ, Jan LY, Jan YN (1994) Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev 8:1787–1802

    Article  CAS  PubMed  Google Scholar 

  41. Schwamborn JC, Puschel AW (2004) The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nat Neurosci 7:923–929

    Article  CAS  PubMed  Google Scholar 

  42. Gu H, Yu SP, Gutekunst CA, Gross RE, Wei L (2013) Inhibition of the Rho signaling pathway improves neurite outgrowth and neuronal differentiation of mouse neural stem cells. Int J Physiol Pathophysiol Pharmacol 5:11–20

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Da Silva JS, Medina M, Zuliani C, Di Nardo A, Witke W et al (2003) RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability. J Cell Biol 162:1267–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hayashi K, Ohshima T, Hashimoto M, Mikoshiba K (2007) Pak1 regulates dendritic branching and spine formation. Dev Neurobiol 67:655–669

    Article  CAS  PubMed  Google Scholar 

  45. Sun CX, Magalhaes MA, Glogauer M (2007) Rac1 and Rac2 differentially regulate actin free barbed end formation downstream of the fMLP receptor. J Cell Biol 179:239–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rashid T, Banerjee M, Nikolic M (2001) Phosphorylation of Pak1 by the p35/Cdk5 kinase affects neuronal morphology. J Biol Chem 276:49043–49052

    Article  CAS  PubMed  Google Scholar 

  47. Takenawa T, Miki H (2001) WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J Cell Sci 114:1801–1809

    CAS  PubMed  Google Scholar 

  48. Miki H, Suetsugu S, Takenawa T (1998) WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J 17:6932–6941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kanungo J, Li BS, Goswami M, Zheng YL, Ramchandran R et al (2007) Cloning and characterization of zebrafish (Danio rerio) cyclin-dependent kinase 5. Neurosci Lett 412:233–238

    Article  CAS  PubMed  Google Scholar 

  50. Caron SJ, Prober D, Choy M, Schier AF (2008) In vivo birthdating by BAPTISM reveals that trigeminal sensory neuron diversity depends on early neurogenesis. Development 135:3259–3269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

These authors thank Dr. Yi-Shuian Huang (Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan) for providing pCMV-mCherry plasmid and Addgene for providing plasmids as mentioned in “Materials and method” section. This study was supported by grants obtained from the Ministry of Science and Technology of Taiwan (MOST-103-2311-B-040-001). The authors thank the Zebrafish Core in Academia Sinica (ZCAS), Institute of Cellular and Organismic Biology (ICOB), which is supported by grant NSC-103-2321-B-001-050 from the National Science Council (NSC), the Taiwan Zebrafish Core Facility (TZCF) for providing the zebrafish AB strain and Tg(huc:gfp), and the National Health Research Institute (NHRI), which is supported by grant 100-2321-B-400-003 from National Science Council (NSC). Upright fluorescent microscopy and confocal microscopy were performed in the Instrument Center of Chung Shan Medical University, which is supported by the National Science Council, Ministry of Education and Chung Shan Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Sung Hsu.

Ethics declarations

Conflicts of Interest

These authors declare that there are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(DOCX 495 kb)

Supplementary Fig. 2

(DOCX 173 kb)

Supplementary Fig. 3

(DOCX 149 kb)

Supplementary Fig. 4

(DOCX 305 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeh, CW., Hsu, LS. Zebrafish diras1 Promoted Neurite Outgrowth in Neuro-2a Cells and Maintained Trigeminal Ganglion Neurons In Vivo via Rac1-Dependent Pathway. Mol Neurobiol 53, 6594–6607 (2016). https://doi.org/10.1007/s12035-015-9550-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9550-2

Keyword

Navigation