Skip to main content

Advertisement

Log in

Deterioration of the Medial Olivocochlear Efferent System Accelerates Age-Related Hearing Loss in Pax2-Isl1 Transgenic Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The development, maturation, and maintenance of the inner ear are governed by temporal and spatial expression cascades of transcription factors that form a gene regulatory network. ISLET1 (ISL1) may be one of the major players in this cascade, and in order to study its role in the regulation of inner ear development, we produced a transgenic mouse overexpressing Isl1 under the Pax2 promoter. Pax2-regulated ISL1 overexpression increases the embryonic ISL1+ domain and induces accelerated nerve fiber extension and branching in E12.5 embryos. Despite these gains in early development, the overexpression of ISL1 impairs the maintenance and function of hair cells of the organ of Corti. Mutant mice exhibit hyperactivity, circling behavior, and progressive age-related decline in hearing functions, which is reflected in reduced otoacoustic emissions (DPOAEs) followed by elevated hearing thresholds. The reduction of the amplitude of DPOAEs in transgenic mice was first detected at 1 month of age. By 6–9 months of age, DPOAEs completely disappeared, suggesting a functional inefficiency of outer hair cells (OHCs). The timing of DPOAE reduction coincides with the onset of the deterioration of cochlear efferent terminals. In contrast to these effects on efferents, we only found a moderate loss of OHCs and spiral ganglion neurons. For the first time, our results show that the genetic alteration of the medial olivocochlear (MOC) efferent system induces an early onset of age-related hearing loss. Thus, the neurodegeneration of the MOC system could be a contributing factor to the pathology of age-related hearing loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen J, Streit A (2013) Induction of the inner ear: stepwise specification of otic fate from multipotent progenitors. Hear Res 297:3–12. doi:10.1016/j.heares.2012.11.018

    Article  PubMed  Google Scholar 

  2. Ma Q, Anderson DJ, Fritzsch B (2000) Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J Assoc Res Otolaryngol 1(2):129–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Matei V, Pauley S, Kaing S, Rowitch D, Beisel KW, Morris K, Feng F, Jones K et al (2005) Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit. Dev Dyn 234(3):633–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Raft S, Groves AK (2014) Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res. doi:10.1007/s00441-014-1917-6

    PubMed  PubMed Central  Google Scholar 

  5. Kelley MW (2006) Regulation of cell fate in the sensory epithelia of the inner ear. Nat Rev Neurosci 7(11):837–849

    Article  CAS  PubMed  Google Scholar 

  6. Fritzsch B, Beisel KW, Hansen LA (2006) The molecular basis of neurosensory cell formation in ear development: a blueprint for hair cell and sensory neuron regeneration? Bioessays 28(12):1181–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bouchard M, de Caprona D, Busslinger M, Xu P, Fritzsch B (2010) Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev Biol 10:89. doi:10.1186/1471-213X-10-89

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kiernan AE, Pelling AL, Leung KK, Tang AS, Bell DM, Tease C, Lovell-Badge R, Steel KP et al (2005) Sox2 is required for sensory organ development in the mammalian inner ear. Nature 434(7036):1031–1035

    Article  CAS  PubMed  Google Scholar 

  9. Jahan I, Pan N, Kersigo J, Fritzsch B (2013) Beyond generalized hair cells: molecular cues for hair cell types. Hear Res 297:30–41. doi:10.1016/j.heares.2012.11.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nichols DH, Pauley S, Jahan I, Beisel KW, Millen KJ, Fritzsch B (2008) Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis. Cell Tissue Res 334(3):339–358. doi:10.1007/s00441-008-0709-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Deng M, Luo XJ, Pan L, Yang H, Xie X, Liang G, Huang L, Hu F et al (2014) LMO4 functions as a negative regulator of sensory organ formation in the mammalian cochlea. J Neurosci 34(30):10072–10077. doi:10.1523/JNEUROSCI.0352-14.2014

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bhati M, Lee C, Nancarrow AL, Lee M, Craig VJ, Bach I, Guss JM, Mackay JP et al (2008) Implementing the LIM code: the structural basis for cell type-specific assembly of LIM-homeodomain complexes. EMBO J 27(14):2018–2029. doi:10.1038/emboj.2008.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hobert O, Westphal H (2000) Functions of LIM-homeobox genes. Trends Genet 16(2):75–83

    Article  CAS  PubMed  Google Scholar 

  14. Pfaff SL, Mendelsohn M, Stewart CL, Edlund T, Jessell TM (1996) Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell 84(2):309–320

    Article  CAS  PubMed  Google Scholar 

  15. Sun Y, Dykes IM, Liang X, Eng SR, Evans SM, Turner EE (2008) A central role for Islet1 in sensory neuron development linking sensory and spinal gene regulatory programs. Nat Neurosci 11(11):1283–1293. doi:10.1038/nn.2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin L, Bu L, Cai CL, Zhang X, Evans S (2006) Isl1 is upstream of sonic hedgehog in a pathway required for cardiac morphogenesis. Dev Biol 295(2):756–763

    Article  CAS  PubMed  Google Scholar 

  17. Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5(6):877–889

    Article  CAS  PubMed  Google Scholar 

  18. Elshatory Y, Everhart D, Deng M, Xie X, Barlow RB, Gan L (2007) Islet-1 controls the differentiation of retinal bipolar and cholinergic amacrine cells. J Neurosci 27(46):12707–12720. doi:10.1523/jneurosci.3951-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Whitney IE, Raven MA, Ciobanu DC, Poche RA, Ding Q, Elshatory Y, Gan L, Williams RW et al (2011) Genetic modulation of horizontal cell number in the mouse retina. Proc Natl Acad Sci U S A 108(23):9697–9702. doi:10.1073/pnas.1103253108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liang X, Song MR, Xu Z, Lanuza GM, Liu Y, Zhuang T, Chen Y, Pfaff SL et al (2011) Isl1 is required for multiple aspects of motor neuron development. Mol Cell Neurosci 47(3):215–222. doi:10.1016/j.mcn.2011.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li H, Liu H, Sage C, Huang M, Chen ZY, Heller S (2004) Islet-1 expression in the developing chicken inner ear. J Comp Neurol 477(1):1–10

    Article  CAS  PubMed  Google Scholar 

  22. Radde-Gallwitz K, Pan L, Gan L, Lin X, Segil N, Chen P (2004) Expression of Islet1 marks the sensory and neuronal lineages in the mammalian inner ear. J Comp Neurol 477(4):412–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang M, Sage C, Li H, Xiang M, Heller S, Chen ZY (2008) Diverse expression patterns of LIM-homeodomain transcription factors (LIM-HDs) in mammalian inner ear development. Dev Dyn 237(11):3305–3312. doi:10.1002/dvdy.21735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fritzsch B, Pan N, Jahan I, Elliott KL (2014) Inner ear development: building a spiral ganglion and an organ of Corti out of unspecified ectoderm. Cell Tissue Res. doi:10.1007/s00441-014-2031-5

    Google Scholar 

  25. Zheng QY, Johnson KR, Erway LC (1999) Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear Res 130(1-2):94–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rowitch DH, Kispert A, McMahon AP (1999) Pax-2 regulatory sequences that direct transgene expression in the developing neural plate and external granule cell layer of the cerebellum. Brain Res Dev Brain Res 117(1):99–108

    Article  CAS  PubMed  Google Scholar 

  27. Muller YL, Yueh YG, Yaworsky PJ, Salbaum JM, Kappen C (2003) Caudal dysgenesis in Islet-1 transgenic mice. Faseb J 17(10):1349–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Turgeon B, Meloche S (2009) Interpreting neonatal lethal phenotypes in mouse mutants: insights into gene function and human diseases. Physiol Rev 89(1):1–26. doi:10.1152/physrev.00040.2007

    Article  CAS  PubMed  Google Scholar 

  29. Kersigo J, D'Angelo A, Gray BD, Soukup GA, Fritzsch B (2011) The role of sensory organs and the forebrain for the development of the craniofacial shape as revealed by Foxg1-cre-mediated microRNA loss. Genesis 49(4):326–341. doi:10.1002/dvg.20714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224(Pt 3):213–232. doi:10.1111/j.1365-2818.2006.01706.x

    Article  CAS  PubMed  Google Scholar 

  31. Alvarez-Buylla A, Ling CY, Kirn JR (1990) Cresyl violet: a red fluorescent Nissl stain. J Neurosci Methods 33(2-3):129–133

    Article  CAS  PubMed  Google Scholar 

  32. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9), e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xia A, Song Y, Wang R, Gao SS, Clifton W, Raphael P, Chao SI, Pereira FA et al (2013) Prestin regulation and function in residual outer hair cells after noise-induced hearing loss. PLoS One 8(12), e82602. doi:10.1371/journal.pone.0082602

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bohuslavova R, Kolar F, Kuthanova L, Neckar J, Tichopad A, Pavlinkova G (2010) Gene expression profiling of sex differences in HIF1-dependent adaptive cardiac responses to chronic hypoxia. J Appl Physiol (1985) 109(4):1195–1202. doi:10.1152/japplphysiol.00366.2010

    Article  CAS  Google Scholar 

  35. Schoen CJ, Burmeister M, Lesperance MM (2013) Diaphanous homolog 3 (Diap3) overexpression causes progressive hearing loss and inner hair cell defects in a transgenic mouse model of human deafness. PLoS One 8(2), e56520. doi:10.1371/journal.pone.0056520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Favor J, Sandulache R, Neuhauser-Klaus A, Pretsch W, Chatterjee B, Senft E, Wurst W, Blanquet V et al (1996) The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc Natl Acad Sci U S A 93(24):13870–13875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fritzsch B (2003) Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia. Brain Res Bull 60(5-6):423–433

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dazert S, Feldman ML, Keithley EM (1996) Cochlear spiral ganglion cell degeneration in wild-caught mice as a function of age. Hear Res 100(1-2):101–106

    Article  CAS  PubMed  Google Scholar 

  39. Makary CA, Shin J, Kujawa SG, Liberman MC, Merchant SN (2011) Age-related primary cochlear neuronal degeneration in human temporal bones. J Assoc Res Otolaryngol 12(6):711–717. doi:10.1007/s10162-011-0283-2

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hans S, Liu D, Westerfield M (2004) Pax8 and Pax2a function synergistically in otic specification, downstream of the Foxi1 and Dlx3b transcription factors. Development 131(20):5091–5102. doi:10.1242/dev.01346

    Article  CAS  PubMed  Google Scholar 

  41. Copley CO, Duncan JS, Liu C, Cheng H, Deans MR (2013) Postnatal refinement of auditory hair cell planar polarity deficits occurs in the absence of Vangl2. J Neurosci 33(35):14001–14016. doi:10.1523/JNEUROSCI.1307-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Christophorou NA, Mende M, Lleras-Forero L, Grocott T, Streit A (2010) Pax2 coordinates epithelial morphogenesis and cell fate in the inner ear. Dev Biol 345(2):180–190. doi:10.1016/j.ydbio.2010.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lawoko-Kerali G, Milo M, Davies D, Halsall A, Helyer R, Johnson CM, Rivolta MN, Tones MA et al (2004) Ventral otic cell lines as developmental models of auditory epithelial and neural precursors. Dev Dyn 231(4):801–814

    Article  CAS  PubMed  Google Scholar 

  44. Martin GK, Vazquez AE, Jimenez AM, Stagner BB, Howard MA, Lonsbury-Martin BL (2007) Comparison of distortion product otoacoustic emissions in 28 inbred strains of mice. Hear Res 234(1-2):59–72. doi:10.1016/j.heares.2007.09.002

    Article  PubMed  Google Scholar 

  45. Jones JM, Montcouquiol M, Dabdoub A, Woods C, Kelley MW (2006) Inhibitors of differentiation and DNA binding (Ids) regulate Math1 and hair cell formation during the development of the organ of Corti. J Neurosci 26(2):550–558

    Article  CAS  PubMed  Google Scholar 

  46. Schuknecht HF (1964) Further observations on the pathology of presbycusis. Arch Otolaryngol 80:369–382

    Article  CAS  PubMed  Google Scholar 

  47. Hofstetter P, Ding D, Powers N, Salvi RJ (1997) Quantitative relationship of carboplatin dose to magnitude of inner and outer hair cell loss and the reduction in distortion product otoacoustic emission amplitude in chinchillas. Hear Res 112(1-2):199–215

    Article  CAS  PubMed  Google Scholar 

  48. Trautwein P, Hofstetter P, Wang J, Salvi R, Nostrant A (1996) Selective inner hair cell loss does not alter distortion product otoacoustic emissions. Hear Res 96(1-2):71–82

    Article  CAS  PubMed  Google Scholar 

  49. Li D, Henley CM, O'Malley BW Jr (1999) Distortion product otoacoustic emissions and outer hair cell defects in the hyt/hyt mutant mouse. Hear Res 138(1-2):65–72

    Article  CAS  PubMed  Google Scholar 

  50. Popelar J, Groh D, Pelanova J, Canlon B, Syka J (2006) Age-related changes in cochlear and brainstem auditory functions in Fischer 344 rats. Neurobiol Aging 27(3):490–500. doi:10.1016/j.neurobiolaging.2005.03.001

    Article  PubMed  Google Scholar 

  51. Dallos P, Wu X, Cheatham MA, Gao J, Zheng J, Anderson CT, Jia S, Wang X et al (2008) Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron 58(3):333–339. doi:10.1016/j.neuron.2008.02.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liberman MC, Gao J, He DZ, Wu X, Jia S, Zuo J (2002) Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419(6904):300–304. doi:10.1038/nature01059

    Article  CAS  PubMed  Google Scholar 

  53. Chan DK, Hudspeth AJ (2005) Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat Neurosci 8(2):149–155. doi:10.1038/nn1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kennedy HJ, Crawford AC, Fettiplace R (2005) Force generation by mammalian hair bundles supports a role in cochlear amplification. Nature 433(7028):880–883. doi:10.1038/nature03367

    Article  CAS  PubMed  Google Scholar 

  55. Adams JC, Schulte BA (1997) Histopathologic observations of the aging gerbil cochlea. Hear Res 104(1-2):101–111

    Article  CAS  PubMed  Google Scholar 

  56. Kawase T, Liberman MC (1993) Antimasking effects of the olivocochlear reflex. I Enhancement of compound action potentials to masked tones. J Neurophysiol 70(6):2519–2532

    CAS  PubMed  Google Scholar 

  57. May BJ, McQuone SJ (1995) Effects of bilateral olivocochlear lesions on pure-tone intensity discrimination in cats. Audit Neurosci 1(4):385–400

    Google Scholar 

  58. Winslow RL, Sachs MB (1987) Effect of electrical stimulation of the crossed olivocochlear bundle on auditory nerve response to tones in noise. J Neurophysiol 57(4):1002–1021

    CAS  PubMed  Google Scholar 

  59. Lauer AM, May BJ (2011) The medial olivocochlear system attenuates the developmental impact of early noise exposure. J Assoc Res Otolaryngol 12(3):329–343. doi:10.1007/s10162-011-0262-7

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liberman MC (1991) The olivocochlear efferent bundle and susceptibility of the inner ear to acoustic injury. J Neurophysiol 65(1):123–132

    CAS  PubMed  Google Scholar 

  61. Maison SF, Luebke AE, Liberman MC, Zuo J (2002) Efferent protection from acoustic injury is mediated via alpha9 nicotinic acetylcholine receptors on outer hair cells. J Neurosci 22(24):10838–10846

    CAS  PubMed  Google Scholar 

  62. Liberman MC, Liberman LD, Maison SF (2014) Efferent feedback slows cochlear aging. J Neurosci 34(13):4599–4607. doi:10.1523/JNEUROSCI.4923-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Maison SF, Adams JC, Liberman MC (2003) Olivocochlear innervation in the mouse: immunocytochemical maps, crossed versus uncrossed contributions, and transmitter colocalization. J Comp Neurol 455(3):406–416. doi:10.1002/cne.10490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Burgess BJ, Adams JC, Nadol JB Jr (1997) Morphologic evidence for innervation of Deiters' and Hensen's cells in the guinea pig. Hear Res 108(1-2):74–82

    Article  CAS  PubMed  Google Scholar 

  65. Matsunobu T, Chung JW, Schacht J (2001) Acetylcholine-evoked calcium increases in Deiters' cells of the guinea pig cochlea suggest alpha9-like receptors. J Neurosci Res 63(3):252–256

    Article  CAS  PubMed  Google Scholar 

  66. Parsa A, Webster P, Kalinec F (2012) Deiters cells tread a narrow path—the Deiters cells-basilar membrane junction. Hear Res 290(1-2):13–20. doi:10.1016/j.heares.2012.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  67. Nam JH, Fettiplace R (2010) Force transmission in the organ of Corti micromachine. Biophys J 98(12):2813–2821. doi:10.1016/j.bpj.2010.03.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yu N, Zhao HB (2009) Modulation of outer hair cell electromotility by cochlear supporting cells and gap junctions. PLoS One 4(11), e7923. doi:10.1371/journal.pone.0007923

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhu Y, Liang C, Chen J, Zong L, Chen GD, Zhao HB (2013) Active cochlear amplification is dependent on supporting cell gap junctions. Nat Commun 4:1786. doi:10.1038/ncomms2806

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mellado Lagarde MM, Cox BC, Fang J, Taylor R, Forge A, Zuo J (2013) Selective ablation of pillar and Deiters' cells severely affects cochlear postnatal development and hearing in mice. J Neurosci 33(4):1564–1576. doi:10.1523/JNEUROSCI.3088-12.2013

    Article  PubMed  Google Scholar 

  71. Simmons DJD, de Caprona DC, Fritzsch B (2011) Development of the inner ear efferent system. In: Auditory and vestibular efferents, vol 38. Springer, New York. doi:10.1007/978-1-4419-7070-1_7

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Z. Hampejsova for the experimental work on transgene copy estimation. This work was supported by the Czech Science Foundation (Grant Agreement No. 13-07996S), by BIOCEV CZ.1.05/1.1.00/02.0109 from the ERDF, “Biotechnological expert” CZ.1.07/2.3.00/30.0020 from the European Social Fund and the state budget of the Czech Republic, and by Grant No. AVOZ50520701 from the Czech Ministry of Education, Youth and Sports. 

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Pavlinkova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

External phenotype of E10.5 embryos. Heterozygous transgenic (Tg +/−) embryos did not show any abnormal gross appearance compared to WT littermates. However, transgenic homozygous embryos (Tg +/+) showed severe abnormalities in the mid-hindbrain region (arrow) and signs of developmental arrest (PDF 514 kb)

Fig. S2

Age-related hearing loss in WT and Tg +/− animals. In WT animals, hearing decline is uniform in all frequencies with a more significant deterioration of hearing at 10–15 months of age (A, C). In contrast, DPOAEs disappear completely and ABR thresholds are significantly elevated in Tg +/− animals in the age of 6–9 months (B, D). Results are means ± SEM for DPOAEs and means ± SD for hearing thresholds. *P < 0.05, **P < 0.01, two-way ANOVA with the Bonferroni correction test (PDF 69 kb)

Fig. S3

Differences in the number of spiral ganglion neurons between WT and TG +/− animals. A significantly lower number of SGNs is found in all cochlear turns in Tg +/− mice compared to WT in all age groups with a slightly larger loss in the basal and middle turn of Tg +/− cochlea at 10–15 months of age. Results are means ± SD, ***P < 0.001, one-way ANOVA with the Bonferroni correction test (PDF 57 kb)

Table S1

(DOCX 19 kb)

Movie S1

(MP4 274 kb)

Movie S2

(MP4 251 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumak, T., Bohuslavova, R., Macova, I. et al. Deterioration of the Medial Olivocochlear Efferent System Accelerates Age-Related Hearing Loss in Pax2-Isl1 Transgenic Mice. Mol Neurobiol 53, 2368–2383 (2016). https://doi.org/10.1007/s12035-015-9215-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9215-1

Keywords

Navigation