Skip to main content

Advertisement

Log in

Wnt signaling regulation of stem-like properties in human lung adenocarcinoma cell lines

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The refractory pulmonary adenocarcinoma is characterized by its metastasis and resistance to cytotoxic agents. While the underlying molecular mechanism is unclear, the property of chemoresistance may mainly lie in the presence of highly resistant cancer stem cells. We examined the function of Wnt/β-catenin signaling in maintaining cancer stem cells (CSCs) in lung adenocarcinoma. Lentivirus-mediated knockdown of β-catenin expression accelerated cell cycle. Subsequently, β-catenin knockdown PC9 cells improve the sensitivity to chemotherapy. Further focusing on Wnt signal by administrating PP and EGFR-TKIs as Wnt antagonists can decrease metastasis and induce apoptosis. Collectively, these results indicate that Wnt signaling pathway plays an essential role in maintaining highly resistant CSCs, regulation of cell cycle, metastasis and apoptosis in lung adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LRP:

Lipoprotein receptor-related protein

APC:

Adenomatous polyposis coli

GSK-3:

Glycogen synthase kinase 3

RSpo2:

R-spondin 2

CK1:

Casein kinase 1

FZD:

Frizzled

TCF:

T-cell factor

LEF:

Lymphoid enhancer factor

EGFR-TKIs:

Tyrosine kinase inhibitors

LDCs:

Label dilution cells

PBS:

Phosphate buffer saline

ALDH:

Aldehyde dehydrogenase

TTF1:

Thyroid transcription factor 1

BIO:

6-Bromoindirubin-3′-oxime

DMEM:

Dulbecco’s modification of Eagle’s medium

BCRP/ABCG2:

Breast cancer resistance protein

LGR:

Leucine-rich repeat G-protein-coupled receptors

β-KD PC9 cells:

β-catenin knockdown PC9 cells

EGFR:

Epidermal growth factor receptor

CMI:

CFSE mean intensity

LRCs:

Label-retaining cells

FBS:

Fetal bovine serum

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, et al. Cancer statistics, 2006. CA Cancer J Clin. 2006;56(2):106–30.

    Article  PubMed  Google Scholar 

  2. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.

    Article  CAS  PubMed  Google Scholar 

  3. Stewart DJ. Tumor and host factors that may limit efficacy of chemotherapy in non-small cell and small cell lung cancer. Crit Rev Oncol Hematol. 2010;75(3):173–234.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Liu YP, Yang CJ, Huang MS, Yeh CT, Wu AT, Lee YC, et al. Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating Notch signaling. Cancer Res. 2013;73(1):406–16.

    Article  CAS  PubMed  Google Scholar 

  5. Morrison R, Schleicher SM, Sun Y, Niermann KJ, Kim S, Spratt DE, et al. Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. J Oncol. 2011;2011:941876.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.

    Article  CAS  PubMed  Google Scholar 

  7. Rivera C, Rivera S, Loriot Y, Vozenin MC, Deutsch E. Lung cancer stem cell: new insights on experimental models and preclinical data. J Oncol. 2011;2011:549181.

    Article  PubMed Central  PubMed  Google Scholar 

  8. O’Flaherty JD, Barr M, Fennell D, Richard D, Reynolds J, O’Leary J, et al. The cancer stem-cell hypothesis: its emerging role in lung cancer biology and its relevance for future therapy. J Thorac Oncol. 2012;7(12):1880–90.

    Article  PubMed  Google Scholar 

  9. Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 2008;26(17):2839–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8(10):755–68.

    Article  CAS  PubMed  Google Scholar 

  11. Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10(6):717–28.

    Article  CAS  PubMed  Google Scholar 

  12. Schoenhals M, Kassambara A, De Vos J, Hose D, Moreaux J, Klein B. Embryonic stem cell markers expression in cancers. Biochem Biophys Res Commun. 2009;383(2):157–62.

    Article  CAS  PubMed  Google Scholar 

  13. Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res. 2010;70(24):10433–44.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Q, Taguchi A, Schliekelman M, Wong CH, Chin A, Kuick R, et al. Comprehensive proteomic profiling of aldehyde dehydrogenases in lung adenocarcinoma cell lines. Int J Proteomics. 2011;2011:145010. doi:10.1155/2011/145010.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Corominas-Faja B, Oliveras-Ferraros C, Cuyas E, Segura-Carretero A, Joven J, Martin-Castillo B, et al. Stem cell-like ALDH (bright) cellular states in EGFR-mutant non-small cell lung cancer: a novel mechanism of acquired resistance to erlotinib targetable with the natural polyphenol silibinin. Cell Cycle. 2013;12(21):3390–404.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Chang A. Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer. 2011;71(1):3–10.

    Article  PubMed  Google Scholar 

  17. Harris-Johnson KS, Domyan ET, Vezina CM, Sun X. Beta-catenin promotes respiratory progenitor identity in mouse foregut. Proc Natl Acad Sci USA. 2009;106(38):16287–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Singh S, Trevino J, Bora-Singhal N, Coppola D, Haura E, Altiok S, et al. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer. Mol Cancer. 2012;11:73.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Lee SH, Koo BS, Kim JM, Huang S, Rho YS, Bae WJ, et al. Wnt/beta-catenin signalling maintains self-renewal and tumourigenicity of head and neck squamous cell carcinoma stem-like cells by activating Oct4. J Pathol. 2014;234(1):99–107.

    Article  CAS  PubMed  Google Scholar 

  20. Prud’homme GJ. Cancer stem cells and novel targets for antitumor strategies. Curr Pharm Des. 2012;18(19):2838–49.

    Article  PubMed  Google Scholar 

  21. Teng Y, Wang X, Wang Y, Ma D. Wnt/beta-catenin signaling regulates cancer stem cells in lung cancer A549 cells. Biochem Biophys Res Commun. 2010;392(3):373–9.

    Article  CAS  PubMed  Google Scholar 

  22. Thorne CA, Hanson AJ, Schneider J, Tahinci E, Orton D, Cselenyi CS, et al. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1 alpha. Nat Chem Biol. 2010;6(11):829–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Xu W, Lacerda L, Debeb BG, Atkinson RL, Solley TN, Li L, et al. The antihelmintic drug pyrvinium pamoate targets aggressive breast cancer. PLoS One. 2013;8(8):e71508.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Dolnikov A, Xu N, Shen S, Song E, Holmes T, Klamer G, et al. GSK-3 beta inhibition promotes early engraftment of ex vivo-expanded haematopoietic stem cells. Cell Prolif. 2014;47(2):113–23.

    Article  CAS  PubMed  Google Scholar 

  25. Kim KA, Wagle M, Tran K, Zhan X, Dixon MA, Liu S, et al. R-Spondin family members regulate the Wnt pathway by a common mechanism. Mol Biol Cell. 2008;19(6):2588–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Dembinski JL, Krauss S. Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin Exp Metastasis. 2009;26(7):611–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Naujok O, Lentes J, Diekmann U, Davenport C, Lenzen S. Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors. BMC Res Notes. 2014;7:273.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Zhang XY, Zheng BQ, Han BH, Huang JS, Geng Q, Xu HL, et al. Lung adenocarcinoma stem cell phenotypes and their correlation with patient prognosis. Zhonghua Zhong Liu Za Zhi. 2009;31(11):836–40.

    PubMed  Google Scholar 

  29. Yin X, Li YW, Jin JJ, Zhou Y, Ren ZG, Qiu SJ, et al. The clinical and prognostic implications of pluripotent stem cell gene expression in hepatocellular carcinoma. Oncol Lett. 2013;5(4):1155–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Paul I, Bhattacharya S, Chatterjee A, Ghosh MK. Current understanding on EGFR and Wnt/beta-catenin signaling in glioma and their possible crosstalk. Genes Cancer. 2013;4(11–12):427–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Georgopoulos NT, Kirkwood LA, Southgate J. A novel bidirectional positive-feedback loop between Wnt-beta-catenin and EGFR-ERK plays a role in context-specific modulation of epithelial tissue regeneration. J Cell Sci. 2014;127(Pt 13):2967–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Okudela K, Woo T, Mitsui H, Tajiri M, Masuda M, Ohashi K. Expression of the potential cancer stem cell markers, CD133, CD44, ALDH1, and beta-catenin, in primary lung adenocarcinoma—their prognostic significance. Pathol Int. 2012;62(12):792–801.

    Article  CAS  PubMed  Google Scholar 

  33. Cortes-Dericks L, Galetta D, Spaggiari L, Schmid RA, Karoubi G. High expression of octamer-binding transcription factor 4A, prominin-1 and aldehyde dehydrogenase strongly indicates involvement in the initiation of lung adenocarcinoma resulting in shorter disease-free intervals. Eur J Cardiothorac Surg. 2012;41(6):e173–81.

    Article  PubMed  Google Scholar 

  34. Moore N, Houghton J, Lyle S. Slow-cycling therapy-resistant cancer cells. Stem Cells Dev. 2012;21(10):1822–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Bragado P, Estrada Y, Sosa MS, Avivar-Valderas A, Cannan D, Genden E, et al. Analysis of marker-defined HNSCC subpopulations reveals a dynamic regulation of tumor initiating properties. PLoS One. 2012;7(1):e29974.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Immervoll H, Hoem D, Sakariassen PO, Steffensen OJ, Molven A. Expression of the “stem cell marker” CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer. 2008;8:48.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the staff in Flow Cytometry Department of Shanghai Jiao Tong University, School of Medicine for their work. This work was supported by grants from the Shanghai Natural Science Foundation of China (13ZR1438600).

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianggang Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, X., Huang, J. et al. Wnt signaling regulation of stem-like properties in human lung adenocarcinoma cell lines. Med Oncol 32, 157 (2015). https://doi.org/10.1007/s12032-015-0596-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0596-9

Keywords

Navigation