Skip to main content

Advertisement

Log in

Pharmacogenetics and pharmacoepigenetics of gemcitabine

  • Original paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Gemcitabine (2′,2′-difluoro 2′deoxycytidine, dFdC) is an analog of cytosine with distinctive pharmacological properties and a wide antitumor-activity spectrum. The pharmacological characteristics of gemcitabine are unique because two main classes of genes are essential for its antitumor effects: membrane transporter protein-coding genes, whose products are responsible for drug intracellular uptake, as well as enzyme-coding genes, which catalyze its activation and inactivation. The study of the pharmacogenetics and pharmacoepigenetics of these two gene classes is greatly required to optimize the drug’s therapeutic use in cancer. This review aims to provide an update of genetic and epigenetic bases that may account for interindividual variation in therapeutic outcome exhibited by gemcitabine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Candelaria M, et al. Genetic determinants of cancer drug efficacy and toxicity. Practical considerations and perspectives. Anticancer Drugs. 2005;16:923–33.

    Article  PubMed  CAS  Google Scholar 

  2. Mini E, Nobilli S, Caciagli B, Landini I, Mazzei T. Cellular pharmacology of gemcitabine. Ann Oncol. 2006;17(Suppl 5):v7–12.

    Article  PubMed  Google Scholar 

  3. Burris HA, Moore MJ, Andersen J. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer. A randomized trial. J Clin Oncol. 1997;15:2403–13.

    PubMed  CAS  Google Scholar 

  4. Sandler AB, et al. Phase III trial of gemcitabine plus cisplatin vs cisplatin alone in patients with locally advanced or metastatic non-small cell lung cancer. J Clin Oncol. 2000;18:122–30.

    PubMed  CAS  Google Scholar 

  5. von der Maase H, et al. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. J Clin Oncol. 2000;18:3068–77.

    Google Scholar 

  6. Gligorov J, et al. Updates on gemcitabine on metastatic breast cancer. Bull Cancer. 2007;94:S90–4.

    PubMed  CAS  Google Scholar 

  7. Kalykaki A, Hellenic Oncology Research Group, et al. Gemcitabine plus oxaliplatin (GEMOX) in pretreated patients with advanced ovarian cancer: a multicenter phase II study of the Hellenic Oncology Research Group (HORG). Anticancer Res. 2008;28(1B):495–500.

    PubMed  CAS  Google Scholar 

  8. Zucali PA, et al. Gemcitabine and vinorelbine in pemetrexed-pretreated patients with malignant pleural mesothelioma. Cancer. 2008;112:1555–61.

    Article  PubMed  CAS  Google Scholar 

  9. Cetina L, Rivera L, Candelaria-Hernández M, De la Garza J, Dueñas-González A. Chemoradiation for cervical cancer in patients with renal dysfunction. Experience with gemcitabine. Anticancer drugs. 2004;15:761–6.

    Article  PubMed  CAS  Google Scholar 

  10. Candelaria M, Cetina L, de la Garza J, Dueñas-Gonzalez A. Clinical implications of gemcitabine in the treatment of cervical cancer. Eur J Cancer Suppl. 2007;5:37–43.

    Article  CAS  Google Scholar 

  11. Gandhi V, Plunkett W. Modulatory activity of 2′,2′-difluorodeoxycytidine on the phosphorylation and cytotoxicity of arabinosyl nucleosides. Cancer Res. 1990;50:3675–80.

    PubMed  CAS  Google Scholar 

  12. Huang P, Chubb S, Hertel LW. Action of 2′,2′-difluorodeoxycytidine on DNA synthesis. Cancer Res. 1991;51:6110–7.

    PubMed  CAS  Google Scholar 

  13. Gandhi V, Legha J, Chen F. Excision of 2′,2′-difluorodeoxycytidine (gemcitabine) monophosphates residues from DNA. Cancer Res. 1996;56:4453–9.

    PubMed  CAS  Google Scholar 

  14. Heinemann V, Xu YZ, Chubb S. Inhibition of ribonucleotide reduction in CCRF-CEM cells by 2′,2′-difluorodeoxycytidine. Mol Pharmacol. 1990;38:567–72.

    PubMed  CAS  Google Scholar 

  15. Heinemann V, Xu YZ, Chubb S. Cellular elimination of 2′,2′-difluorodeoxycytidine 5′triphosphate: a mechanism of self-potentiation. Cancer Res. 1992;52:533–9.

    PubMed  CAS  Google Scholar 

  16. Clarke ML, Mackey JR, Baldwin SA, Young JD, Cass CE. The role of membrane transporters in cellular resistance to anticancer nucleoside drugs. Cancer Treat Res. 2002;112:27–47.

    PubMed  CAS  Google Scholar 

  17. Baldwin SA, Mackey JR, Cass CE, Young JD. Nucleoside transporters: molecular biology and implications for therapeutic development. Mol Med Today. 1999;5:216–24.

    Article  PubMed  CAS  Google Scholar 

  18. Hopper-Borge E, et al. Human multidrug resistance protein 7 (ABCC10) is a resistance factor for nucleoside analogs and epothilone B. Cancer Res. 2009;69:178–84.

    Article  PubMed  CAS  Google Scholar 

  19. Sheng Z, et al. Characterization of the transport properties of human multidrug resistance protein 7 (MRP7, ABCC10). Mol Pharmacol. 2003;63:351–8.

    Article  Google Scholar 

  20. Kong W, Engel K, Wang J. Mammalian nucleoside transporters. Curr Drug Metab. 2004;5:63–84.

    Article  PubMed  CAS  Google Scholar 

  21. Abdulla P, Coe IR. Characterization and functional analysis of the promoter for the human equilibrative nucleoside transport gene, hENT1. Nucleosides Nucleotides Nucleic Acids. 2007;26:99–110.

    Article  PubMed  CAS  Google Scholar 

  22. Huang Y. Pharmacogenetics/genomics of membrane transporters in cancer chemotherapy. Cancer Metastasis Rev. 2007;26:183–201.

    Article  PubMed  CAS  Google Scholar 

  23. Pennycooke M, Chaudary N, Shuralyova I, Zhang Y, Coe IR. Differential expression of human nucleoside transporters in normal and tumor tissue. Biochem Biophys Res Commun. 2001;280:951–9.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang J, et al. The role of nucleoside transporters in cancer chemotherapy with nucleoside drugs. Cancer Metastasis Rev. 2007;26:85–110.

    Article  PubMed  CAS  Google Scholar 

  25. Griffiths M, et al. Molecular cloning and characterization of a nitrobenzylthioinosine-insensitive (EI) equilibrative nucleoside transporter from human placenta. Biochem J. 1997;328:739–43.

    PubMed  CAS  Google Scholar 

  26. Barnes K, et al. Distribution and functional characterization of equilibrative nucleoside transporter-4, a novel cardiac adenosine transporter activated at acidic pH. Circ Res. 2006;99:510–9.

    Article  PubMed  CAS  Google Scholar 

  27. Gati WP, Paerson AR, Larratt LM. Sensitivity of acute leukemia cells to cytarabine is a correlate of cellular es nucleoside transporter site content measures by flow cytometry with SAENTA-fluorescein. Blood. 1997;90:346–53.

    PubMed  CAS  Google Scholar 

  28. Achiwa H, et al. Determinants of sensitivity and resistance to gemcitabine: the roles of human equilibrative nucleoside transporter 1 and deoxycytidine kinase in non-small cell lung cancer. Cancer Sci. 2004;95:753–7.

    Article  PubMed  CAS  Google Scholar 

  29. Choi DS, et al. Genomic organization and expression of the mouse equilibrative, nitrobenzylthioinosine-sensitive nucleoside transporter 1 (ENT1) gene. Biochem Biophys Res Commun. 2000;277:200–8.

    Article  PubMed  CAS  Google Scholar 

  30. Giovanetti E, et al. Pharmacogenetics of anticancer drug sensitivity in pancreatic cancer. Mol Cancer Ther. 2006;5:1387–95.

    Article  CAS  Google Scholar 

  31. Giovanetti E, et al. Transcription analysis of human equilibrative nucleoside transporter-1 predicts survival in pancreas cancer patients treated with gemcitabine. Cancer Res. 2006;66:3928–35.

    Article  CAS  Google Scholar 

  32. Spratlin J, et al. The absence of human equilibrative nucleoside transporter 1 is associated with reduced survival in patients with gemcitabine-treated pancreas adenocarcinoma. Clin Cancer Res. 2004;10:6956–61.

    Article  PubMed  CAS  Google Scholar 

  33. Mackey JR, et al. Immunohistochemical variation of human equilibrative nucleoside transporter 1 protein in primary breast cancers. Clin Cancer Res. 2002;8:110–6.

    PubMed  CAS  Google Scholar 

  34. Oguri T, et al. The absence of human equilibrative nucleoside transporter 1 expression predicts nonresponse to gemcitabine-containing chemotherapy in non-small cell lung cancer. Cancer Lett. 2007;256:112–9.

    Article  PubMed  CAS  Google Scholar 

  35. Baldwin SA, Yao SY, Hyde RJ, Foppolo S, Barnes K. Functional characterization of novel human and mouse equilibrative nucleoside transporters (hENT3 and mENT3) located in intracellular membranes. J Biol Chem. 2005;280:15880–7.

    Article  PubMed  CAS  Google Scholar 

  36. Ritzel MW, et al. Molecular identification and characterization of novel human and mouse concentrative Na+ nucleoside cotransporter proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides. J Biol Chem. 2001;276:2914–27.

    Article  PubMed  CAS  Google Scholar 

  37. Wang J, et al. Na + dependent purine nucleoside transporter from human kidney: cloning and functional characterization. Am J Physiol. 1997;273:F1058–65.

    PubMed  CAS  Google Scholar 

  38. Wang J, et al. Functional and molecular characteristics of Na(+)-dependent nucleoside transporters. Pharm Res. 1997;14:1524–32.

    Article  PubMed  CAS  Google Scholar 

  39. Molina-Arcas M, et al. Fludarabine uptake mechanisms in B-cell chronic lymphocytic leukemia. Blood. 2003;101:2328–34.

    Article  PubMed  CAS  Google Scholar 

  40. Felipe A, et al. Na+ dependent nucleoside transport in liver: two different isoforms from the same gene family are expressed in liver cells. Biochem J. 1998;330:997–1001.

    PubMed  CAS  Google Scholar 

  41. Lostao MP, et al. Electrogenic uptake of nucleoside transporter 1 (hCNT1) expressed in Xenopus laevis oocytes. FEBS Lett. 2000;481:137–40.

    Article  PubMed  CAS  Google Scholar 

  42. Dragan Y, et al. Selective loss of nucleoside carrier expression in rat hepatocarcinomas. Hepatology. 2000;32:239–46.

    Article  PubMed  CAS  Google Scholar 

  43. Pastor-Anglada M, et al. Nucleoside transporters and liver cell growth. Biochem Cell Biol. 1998;76:771–7.

    Article  PubMed  CAS  Google Scholar 

  44. Valdes R, et al. Nutritional regulation of nucleoside transporter expression in rat small intestine. Gastroenterology. 2000;119:623–30.

    Google Scholar 

  45. Mata JF, et al. Role of the human concentrative nucleoside transporter (hCNT1) in the cytotoxic action of 5′deoxy-5fluorouridine, an active intermediate metabolite of capecitabine, a novel oral anticancer drug. Mol Pharmacol. 2001;59:1542–8.

    PubMed  CAS  Google Scholar 

  46. Soler C, et al. Regulation of nucleoside transport by lipopolysaccharide, phorbol esters, and tumor necrosis factor-alfa in human B-lymphocytes. J Biol Chem. 1998;273:26939–45.

    Article  PubMed  CAS  Google Scholar 

  47. Farre X, et al. Expression of the nucleoside-derived drug transporters hCNT1, hETN1, hENT2 in gynecologic tumors. Int J Cancer. 2004;112:959–66.

    Article  PubMed  CAS  Google Scholar 

  48. Gloeckner-Hofman K, et al. Expression of the high-affinity fluoropyrimidine-preferring nucleoside transporter hCNT1 correlates with decreased disease-free survival in breast cancer. Oncology. 2006;70:238–44.

    Article  CAS  Google Scholar 

  49. García-Manteiga J, Molina-Arcas M, Casado FJ, Mazo A, Pastor-Anglada M. Nucleoside transporter profiles in human pancreatic cáncer cells: role of hCNT1 in 2′,2′-difluorodeoxycytidine-induced cytotoxicity. Clin Cancer Res. 2003;9:5000–8.

    PubMed  Google Scholar 

  50. Cano-Soldado P, et al. Compensatory effects of the human nucleoside transporters on the response to nucleoside-derived drugs in breast cancer MCF7 cells. Biochem Pharmacol. 2008;75:639–48.

    Article  PubMed  CAS  Google Scholar 

  51. Osato DH, et al. Functional characterization in yeast of genetic variants in the human equilibrative nucleoside transporter, ENT1. Pharmacogenetics. 2003;13:297–301.

    Article  PubMed  CAS  Google Scholar 

  52. Myers SN, et al. Functional single nucleotide polymorphism haplotypes in the human equilibrative nucleoside transporter 1. Pharmacogenet Genomics. 2006;16:315–20.

    Article  PubMed  CAS  Google Scholar 

  53. Gray JH, et al. Functional and genetic diversity in the concentrative nucleoside transporter, CNT1, in human populations. Mol Pharmacol. 2004;65:512–9.

    Article  PubMed  CAS  Google Scholar 

  54. Badagnani I, et al. Functional analysis of genetic variants in the human concentrative nucleoside transporter 3 (CNT3; SLC28A3). Pharmacogenomics J. 2005;124:505–12.

    Google Scholar 

  55. Owen RP, Badagnani I, Giacomini KM. Molecular determinants of specificity for synthetic nucleoside analogs in the concentrative nucleoside transporter, CNT2. J Biol Chem. 2006;281:26672–82.

    Article  CAS  Google Scholar 

  56. Errasti-Mugaren E, Cano-Soldado P, Pastor-Anglada M, Casado FJ. Functional characterization of a nucleoside-derived drug transporter variant (hCNT3C602R) showing altered sodium-binding capacity. Mol Pharmacol. 2008;73:379–86.

    Article  CAS  Google Scholar 

  57. Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006;6:846–56.

    Article  PubMed  CAS  Google Scholar 

  58. Chen T, Li E. Structure and function of eukaryotic DNA methyltransferases. Curr Top Dev Biol. 2004;60:55–89.

    Article  PubMed  CAS  Google Scholar 

  59. Smith BC, Denu JM. Chemical mechanisms of histone lysine and arginine. Biochem Biophys Acta. 2009;1789:45–57.

    PubMed  CAS  Google Scholar 

  60. Luger K. Dynamic nucleosomes. Chromosome Res. 2006;14:5–16.

    Article  PubMed  CAS  Google Scholar 

  61. Park YJ, Luger K. Structure and function of nucleosome assembly proteins. Biochem Cell Biol. 2006;84:549–58.

    Article  PubMed  CAS  Google Scholar 

  62. Thiriet C, Hayes JJ. Functionally relevant histone-DNA interactions extend beyond the classically defined nucleosome core region. J Biol Chem. 1998;273:21352–8.

    Article  PubMed  CAS  Google Scholar 

  63. Rice JC, Allis CD. Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol. 2001;13:263–73.

    Article  PubMed  CAS  Google Scholar 

  64. Schotta M, Lachner M, Sarma K. A silencing pathway to induce H3–K9 and H4–K20 trimethylation at constitutive heterochromatin. Genes Dev. 2004;18:1251–62.

    Article  PubMed  CAS  Google Scholar 

  65. Cao R, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298:1039–43.

    Article  PubMed  CAS  Google Scholar 

  66. Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res. 2008;647:21–9.

    PubMed  CAS  Google Scholar 

  67. Zhou X, Ma H. Evolutionary history of histone demethylase families: distinct evolutionary patterns suggest functional divergence. BMC Evol Biol. 2008;8:294.

    Article  PubMed  CAS  Google Scholar 

  68. Kikuchi R, et al. Regulation of the expression of human organic anion transporter 3 by hepatocyte nuclear factor 1 α/β and DNA methylation. Mol Pharmacol. 2006;70:887–96.

    Article  PubMed  CAS  Google Scholar 

  69. Kastrup IB, et al. Genetic and epigenetic alterations of the reduced folate carrier in untreated diffuse large B-cell lymphoma. Eur J Haematol. 2008;80:61–6.

    PubMed  CAS  Google Scholar 

  70. Worm J, Kirkin AF, Dzhandzhugazyan KN, Guldberg P. Methylation-dependent silencing of the reduced folate carrier in inherently methotrexate-resistant human breast cancer cells. J Biol Chem. 2001;276:39990–40000.

    Article  PubMed  CAS  Google Scholar 

  71. Park JY, et al. Silencing of the candidate tumor suppressor gene solute carrier family 5 member 8 (SLC5A8) in human pancreatic cancer. Pancreas. 2008;36:32–9.

    Article  CAS  Google Scholar 

  72. Shutoh M, et al. DNA methylation of genes linked with retinoid signaling in gastric carcinoma: expression of the retinoid acid receptor beta, cellular retinol-binding protein 1, and tazarotene-induced gene 1 genes is associated with DNA methylation. Cancer. 2005;104:1609–19.

    Article  PubMed  CAS  Google Scholar 

  73. Provenzano MJ, Fitzgerald MP, Krager K, Domann FE. Increased iodine uptake in thyroid carcinoma after treatment with sodium butyrate and decitabine (5-Aza-dC). Otolaryngol Head Neck Surg. 2007;137:722–8.

    Article  PubMed  Google Scholar 

  74. Arce C, et al. A proof-of-principle study of epigenetic therapy added to neoadjuvant Doxorubicin cyclophosphamide for locally advanced breast cancer. PloS ONE. 2006;1:e98.

    Article  PubMed  CAS  Google Scholar 

  75. Chottiner EG, et al. Cloning and expression of human deoxycytidine kinase cDNA. Proc Natl Acad Sci. 1991;88:1531–5.

    Article  PubMed  CAS  Google Scholar 

  76. Kroep JR, et al. Pretreatment deoxycytidine kinase levels predict in vivo gemcitabine sensitivity. Mol Cancer Ther. 2002;1:371–6.

    PubMed  CAS  Google Scholar 

  77. Manome Y, et al. Viral vector transduction of the human deoxycytidine kinase cDNA sensitizes glioma cells to the cytotoxic effects of 1-B-D-arabinofuranosylcytosine in vitro and in vivo. Nat Med. 1996;2:567–73.

    Article  PubMed  CAS  Google Scholar 

  78. Sebastiani V, et al. Immunohistochemical and genetic evaluation of deoxycytidine kinase in pancreatic cancer: relationship to molecular mechanisms of gemcitabine resistance and survival. Clin Cancer Res. 2006;12:2492–7.

    Article  PubMed  CAS  Google Scholar 

  79. Galmarini CM, Clarke ML, Jordheim L. Resistance to gemcitabine in a human follicular lymphoma cell line is due to partial deletion of the deoxycytidine kinase gene. BMC Pharmacol. 2004;4:8.

    Article  PubMed  Google Scholar 

  80. Lamba J, et al. Pharmacogenetics of deoxycytidine kinase: identification and characterization of novel genetic variants. J Pharmacol Exp Ther. 2007;323:935–45.

    Article  PubMed  CAS  Google Scholar 

  81. Chen E, Johnson EE, Vetter S, Mitchell BS. Characterization of the deoxycytidine kinase promoter in human lymphoblast cell lines. J Clin Invest. 1995;95:1660–8.

    Article  PubMed  CAS  Google Scholar 

  82. GE Y, Jensen TL, Matherly LH, Taub JW. Physical and functional interactions between USF and Sp1 proteins regulate human deoxycytidine kinase promoter activity. J Biol Chem. 2003;278:49901–10.

    Article  PubMed  CAS  Google Scholar 

  83. Bergman AM, Pinedo HM, Peters GJ. Determinants of resistance to 2′,2′-difluorodeoxycytidine (gemcitabine). Drug Resist Updat. 2002;5:19–33.

    Article  PubMed  CAS  Google Scholar 

  84. Ohhashi S, et al. Down-regulation of deoxycytidine kinase enhances acquired resistance to gemcitabine in pancreatic cancer. Anticancer Res. 2008;28:2205–12.

    PubMed  CAS  Google Scholar 

  85. Antonsson BE, Avramis VI, Nyce J, Holcenberg JS. Effect of 5-azacytidine and congeners on DNA methylation and expression of deoxycytidine kinase in the human lymphoid cell lines CCRF/CEM/0 and CCRF/CEM/dCK-1. Cancer Res. 1987;47:3672–8.

    PubMed  CAS  Google Scholar 

  86. Avramis VI, Mecum RA, Nyce J, Steele DA, Holcenberg JS. Pharmacodynamic and DNA methylation studies of high-dose 1-beta-D-arabinofuranosyl cytosine before and after in vivo 5-azacytidine treatment in pediatric patients with refractory acute lymphocytic leukemia. Cancer Chemother Pharmacol. 1989;24:203–10.

    PubMed  CAS  Google Scholar 

  87. Jordheim LP, Guittet O, Lepoivre M, Galmarini M, Dumontest C. Increased expression of the large subunit of ribonucleotide reductase is involved in resistance to gemcitabine in human mammary adenocarcinoma cells. Mol Cancer Ther. 2005;4:1268–76.

    Article  PubMed  CAS  Google Scholar 

  88. Boukovinas I, et al. Tumor BRCA1, RRM1 and RRM2 mRNA expression levels and clinical response to first-line gemcitabine plus docetaxel in non-small-cell lung cancer patients. PloS ONE. 2008;3:e3695.

    Article  PubMed  CAS  Google Scholar 

  89. Rosell R, Danenberg KD, Alberola V. Ribonucleotide reductase messenger RNA expression and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients. Clin Cancer Res. 2004;10:1318–25.

    Article  PubMed  CAS  Google Scholar 

  90. Souglakos J, et al. Ribonucleotide reductase subunits M1 and M2 mRNA expression levels and clinical outcome of lung adenocarcinoma patients treated with docetaxel/gemcitabine. Br J Cancer. 2008;98:1710–5.

    Article  PubMed  CAS  Google Scholar 

  91. Kwon WS, et al. Ribonucleotide reductase M1 (RRM 1) 2464 G>A polymorphism shows an association with gemcitabine chemosensitivity in cancer cell lines. Pharmacogenet Genomics. 2006;16:429–38.

    Article  PubMed  CAS  Google Scholar 

  92. Ando T, Nishimura M, Oka Y. Decitabine (5-Aza-2′-deoxycytidine) decreased DNA methylation and expression of MDR-1 gene in K562/ADM cells. Leukemia. 2000;14:1915–20.

    Article  PubMed  CAS  Google Scholar 

  93. Chabner BA, Johns DG, Coleman CN, Drake JC, Evans WH. Purification and properties of cytidine deaminase from normal and leukemic granulocytes. J Clin Invest. 1974;53:287–90.

    Article  Google Scholar 

  94. Galmarini CM, Mackey JR, Dumontet C. Nucleoside analogs: mechanisms of drug resistance and reversal strategies. Leukemia. 2001;15:875–90.

    Article  PubMed  CAS  Google Scholar 

  95. Yonemori K, et al. Severe drug toxicity associated with a single-nucleotide polymorphism of the cytidine deaminase gene in a Japanese cancer patient treated with gemcitabine plus visplatin. Clin Cancer Res. 2005;11:2620–4.

    Article  PubMed  CAS  Google Scholar 

  96. Gilbert JA, et al. Gemcitabine pharmacogenomics: cytidine deaminase and deoxycytidylate deaminase gene resequencing and functional genomics. Clin Cancer Res. 2006;12:1794–803.

    Article  PubMed  CAS  Google Scholar 

  97. Schirmer M, Stegmann AP, Geisen F, Konwalinka G. Lack of cross-resistance with gemcitabine and cytarabine in cladribine-resistant HL60 cells with elevated 5′-nucleotidase activity. Exp Hematol. 1998;26:1223–8.

    PubMed  CAS  Google Scholar 

  98. Sève P, et al. cN-II expression predicts survival in patients receiving gemcitabine for advanced non-small cell lung cancer. Lung Cancer. 2005;49:363–70.

    Article  PubMed  Google Scholar 

  99. Smid K, et al. Micro-array analysis of resistance for gemcitabine results in increased expression of ribonucleotide reductase subunits. Nucleosides Nucleotides Nucleic Acids. 2006;25:1001–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dueñas-González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Candelaria, M., de la Cruz-Hernández, E., Pérez-Cárdenas, E. et al. Pharmacogenetics and pharmacoepigenetics of gemcitabine. Med Oncol 27, 1133–1143 (2010). https://doi.org/10.1007/s12032-009-9349-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-009-9349-y

Keywords

Navigation