Skip to main content

Advertisement

Log in

Critical Closing Pressure During Intracranial Pressure Plateau Waves

  • ORIGINAL ARTICLE
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Critical closing pressure (CCP) denotes a threshold of arterial blood pressure (ABP) below which brain vessels collapse and cerebral blood flow ceases. Theoretically, CCP is the sum of intracranial pressure (ICP) and arterial wall tension (WT). The aim of this study is to describe the behavior of CCP and WT during spontaneous increases of ICP, termed plateau waves, in order to quantify ischemic risk.

Methods

To calculate CCP, we used a recently introduced multi-parameter method (CCPm) which is based on the modulus of cerebrovascular impedance. CCP is derived from cerebral perfusion pressure, ABP, transcranial Doppler estimators of cerebrovascular resistance and compliance, and heart rate. Arterial WT was estimated as CCPm-ICP. The clinical data included recordings of ABP, ICP, and transcranial Doppler-based blood flow velocity from 38 events of ICP plateau waves, recorded in 20 patients after head injury.

Results

Overall, CCPm increased significantly from 51.89 ± 8.76 mmHg at baseline ICP to 63.31 ± 10.83 mmHg at the top of the plateau waves (mean ± SD; p < 0.001). Cerebral arterial WT decreased significantly during plateau waves by 34.3 % (p < 0.001), confirming their vasodilatatory origin. CCPm did not exhibit the non-physiologic negative values that have been seen with traditional methods for calculation, therefore rendered a more plausible estimation of CCP.

Conclusions

Rising CCP during plateau waves increases the probability of cerebral vascular collapse and zero flow when the difference: ABP–CCP (the “collapsing margin”) becomes zero or negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lundberg N. Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl. 1960;36(149):1–193.

    PubMed  CAS  Google Scholar 

  2. Rosner MJ, Becker DP. Origin and evolution of plateau waves. Experimental observations and a theoretical model. J Neurosurg. 1984;60(2):312–24.

    Article  PubMed  CAS  Google Scholar 

  3. Hayashi M, Handa Y, Kobayashi H, Kawano H, Ishii H, Hirose S. Plateau-wave phenomenon (I). Correlation between the appearance of plateau waves and CSF circulation in patients with intracranial hypertension. Brain. 1991;114(Pt 6):2681–91.

    Article  PubMed  Google Scholar 

  4. Hayashi M, Kobayashi H, Handa Y, Kawano H, Kabuto M. Brain blood volume and blood flow in patients with plateau waves. J Neurosurg. 1985;63(4):556–61.

    Article  PubMed  CAS  Google Scholar 

  5. Castellani G, Zweifel C, Kim DJ, Carrera E, Radolovich DK, Smielewski P, Hutchinson PJ, Pickard JD, Czosnyka M. Plateau waves in head injured patients requiring neurocritical care. Neurocrit Care. 2009;11(2):143–50.

    Article  PubMed  Google Scholar 

  6. Czosnyka M, Smielewski P, Piechnik S, Schmidt EA, Al-Rawi PG, Kirkpatrick PJ, Pickard JD. Hemodynamic characterization of intracranial pressure plateau waves in head-injury patients. J Neurosurg. 1999;91(1):11–9.

    Article  PubMed  CAS  Google Scholar 

  7. Hayashi M, Kobayashi H, Kawano H, Yamamoto S, Maeda T. Cerebral blood flow and ICP patterns in patients with communicating hydrocephalus after aneurysm rupture. J Neurosurg. 1984;61(1):30–6.

    Article  PubMed  CAS  Google Scholar 

  8. Risberg J, Lundberg N, Ingvar DH. Regional cerebral blood volume during acute transient rises of the intracranial pressure (plateau waves). J Neurosurg. 1969;31(3):303–10.

    Article  PubMed  CAS  Google Scholar 

  9. Hayashi M, Kobayashi H, Kawano H, Handa Y, Yamamoto S, Kitano T. ICP patterns and isotope cisternography in patients with communicating hydrocephalus following rupture of intracranial aneurysm. J Neurosurg. 1985;62(2):220–6.

    Article  PubMed  CAS  Google Scholar 

  10. Avezaat CJJ, van Eijndhoven JHM. Cerebrospinal fluid pulse pressure and craniospinal dynamics. A theoretical clinical and experimental study. Thesis. The Hague: A Jongbloed; 1984.

  11. Rosner MJ. Pathophysiology and management of increased intracranial pressure. Care: Neurosurg Int; 1999. p. 57–112.

    Google Scholar 

  12. Matsuda M, Yoneda S, Handa H, Gotoh H. Cerebral hemodynamic changes during plateau waves in brain-tumor patients. J Neurosurg. 1979;50(4):483–8.

    Article  PubMed  CAS  Google Scholar 

  13. Gjerris F, Borgesen SE, Hoppe E, Boesen F, Nordenbo AM. The conductance to outflow of CSF in adults with high-pressure hydrocephalus. Acta Neurochir (Wien). 1982;64(1–2):59–67.

    Article  CAS  Google Scholar 

  14. Batorski L, Czosnyka M, Laniewski P, Zaworski W. Application of advanced forms of intracranial pressure analysis in craniosynostosis. In: Hoff JT, Betz AL, editors. Intracranial pressure, vol. VII. Berlin/Heidelberg/New York: Springer-Verlag; 1989. p. 189–92.

    Google Scholar 

  15. Renier D, Sainte-Rose C, Marchac D, Hirsch JF. Intracranial pressure in craniostenosis. J Neurosurg. 1982;57(3):370–7.

    Article  PubMed  CAS  Google Scholar 

  16. Czosnyka M, Pickard JD. Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry. 2004;75:813–21.

    Article  PubMed  CAS  Google Scholar 

  17. Schmidt B, Czosnyka M, Schwarze JJ, Sander D, Gerstner W, Lumenta CB, Pickard JD, Klingelhofer J. Cerebral vasodilatation causing acute intracranial hypertension: a method for noninvasive assessment. J Cereb Blood Flow Metab. 1999;19(9):990–6.

    Article  PubMed  CAS  Google Scholar 

  18. Burton AC. Fundamental instability of the small blood vessels and critical closing pressure in vascular beds. Am J Physiol. 1951;164:330–1.

    PubMed  Google Scholar 

  19. Brunner MJ, Greene AS, Sagawa K, Shoukas AA. Determinants of systemic zero-flow arterial pressure. Am J Physiol 1983;245:H453–9.

    Google Scholar 

  20. Czosnyka M, Smielewski P, Piechnik S, Al-Rawi PG, Kirkpatrick PJ, Matta BF, Pickard JD. Critical closing pressure in cerebrovascular circulation. J Neurol Neurosurg Psychiatry. 1999;66:606–11.

    Article  PubMed  CAS  Google Scholar 

  21. Panerai RB. The critical closing pressure of the cerebral circulation. Med Eng Phys. 2003;25:621–32.

    Article  PubMed  CAS  Google Scholar 

  22. Dewey RC, Pierer HP, Hunt WE. Experimental cerebral hemodynamics-Vasomotor tone, critical closing pressure, and vascular bed resistance. J Neurosurg. 1974;41(5):597–606.

    Google Scholar 

  23. López-Magaña JA, Richards HK, Radolovich DK, Kim DJ, Smielewski P, Kirkpatrick PJ, Pickard JD, Czosnyka M. Critical closing pressure: comparison of three methods. J Cereb Blood Flow Metab. 2009;29(5):1–7.

    Google Scholar 

  24. Panerai RB, Salinet AS, Brodie FG, Robinson TG. Influence of calculation method on estimates of cerebral critical closing pressure. Physiol Meas. 2011;32:1–16.

    Article  Google Scholar 

  25. Ursino M, Di Giammarco P. A mathematical model of the relationship between cerebral blood volume and intracranial pressure changes: the generation of plateau waves. Ann Biomed Eng. 1991;19(1):15–42.

    Article  PubMed  CAS  Google Scholar 

  26. Richards HK, Czosnyka M, Pickard JD. Assessment of critical closing pressure in the cerebral circulation as a measure of cerebrovascular tone. Acta Neurochir (Wien). 1999;141(11):1221–7.

    Article  CAS  Google Scholar 

  27. Aaslid R, Lash SR, Bardy GH, Gild WH, Newell DW. Dynamic pressure–flow velocity relationships in the human cerebral circulation. Stroke. 2003;34(7):1645–9.

    Article  PubMed  Google Scholar 

  28. Michel E, Hillebrand S, von Twickel J, Zernikow B, Jorch G. Frequency dependence of cerebrovascular impedance in preterm neonates: a different view on critical closing pressure. J Cereb Blood Flow Metab. 1997;17:1127–31.

    Article  PubMed  CAS  Google Scholar 

  29. Puppo C, Camacho J, Yelicich B, Moraes L, Biestro A, Gomez H. Bedside study of cerebral critical closing pressure in patients with severe traumatic brain injury: a transcranial Doppler study. Acta Neurosurg Suppl. 2012;114:283–8.

    Article  Google Scholar 

  30. Varsos GV, Richards H, Kasprowicz M, Budohoski KP, Brady KM, Reinhard M, Avolio M, Smielewski P, Pickard JD, Czosnyka M. Critical closing pressure determined with a model of cerebrovascular impedance. J Cereb Blood Flow Metab. 2012;33(2):235–43.

    Google Scholar 

  31. Kim DJ, Kasprowicz M, Carrera E, Castellani G, Zweifel C, Lavinio A, Smielewski P, Sutcliffe MP, Pickard JD, Czosnyka M. The monitoring of relative changes in compartmental compliances of brain. Physiol Meas. 2009;30(7):647–59.

    Article  PubMed  CAS  Google Scholar 

  32. de Riva N, Budohoski KP, Smielewski P, Kasprowicz M, Zweifel C, Luzius A, Reinhard M, Fabregas N, Pickard JD, Czosnyka M. Transcranial Doppler pulsatility index: what it is and what it isn’t. Neurocrit Care. 2012;17(1):58–66.

    Article  PubMed  Google Scholar 

  33. Czosnyka M, Richards HK, Reinhard M, Steiner AL, Budohoski K, Smielewski P, Pickard JD, Kasprowicz M. Cerebrovascular time constant: dependence on cerebral perfusion pressure and end-tidal carbon dioxide concentration. Neurol Res. 2012;34(1):17–24.

    Article  PubMed  CAS  Google Scholar 

  34. Kasprowicz M, Czosnyka M, Soehle M, Smielewski P, Kirkpatrick PJ, Pickard JD, Budohoski KP. Vasospasm shortens cerebral arterial time constant. Neurocrit Care. 2011;16(2):213–8; ISSN 1541-6933.

    Google Scholar 

  35. Carrera E, Kim DJ, Castellani G, Zweifel C, Smielewski P, Pickard JD, Kirkpatrick PJ, Czosnyka M. Cerebral arterial compliance in patients with internal carotid artery disease. Eur J Neurol. 2010;18:711–8.

    Article  PubMed  Google Scholar 

  36. Soehle M, Czosnyka M, Pickard JD, Kirkpatrick PJ. Critical closing pressure in subarachnoid hemorrhage: effect of cerebral vasospasm and limitations of a transcranial Doppler-derived estimation. Stroke. 2004;35(6):1393–8.

    Article  PubMed  Google Scholar 

  37. Gazzoli P, Frigerio M, De Peri E, Rasulo F, Gasparotti R, Lavinio A. Latronico N.A case of negative critical closing pressure. Abstracts of the 8th international conference on Xenon CT and related cerebral blood flow techniques: cerebral blood flow and brain metabolic imaging in clinical practice. Br J Neurosurg. 2006;20:348.

    Google Scholar 

  38. Daley ML, Leffler CW, Czosnyka M, Pickard JD. Plateau waves: changes of cerebrovascular pressure transmission. Acta Neurochir Suppl. 2005;95:327–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Institute of Health Research, Biomedical Research Centre (Neuroscience Theme), NIHR Senior Investigator Awards (JDP) and the Medical Research Council (Grants G0600986 and G9439390).

Conflict of interest

ICM+ Software is licensed by Cambridge Enterprise, Cambridge, UK, http://www.neurosurg.cam.ac.uk/icmplus/. MC and PS have a financial interest in a fraction of the licensing fee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios V. Varsos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varsos, G.V., de Riva, N., Smielewski, P. et al. Critical Closing Pressure During Intracranial Pressure Plateau Waves. Neurocrit Care 18, 341–348 (2013). https://doi.org/10.1007/s12028-013-9830-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-013-9830-5

Keywords

Navigation