Skip to main content

Advertisement

Log in

Investigation of Human Embryonic Stem Cell-Derived Keratinocytes as an In Vitro Research Model for Mechanical Stress Dynamic Response

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The epidermis is mainly composed of keratinocytes forming a protective barrier. It is perpetually subjected to mechanical stress and strain during development, homeostasis and disease. Perturbation of the normal strain with alteration of its biological response may lead to severe diseases such as psoriasis and epidermolysis bullosa. To date, most of the studies about skin response to mechanical stress used immortalized cell lines (i.e. HaCaT) or primary cells from donors, which suffer issues of limited physiological relevance and inter-donor variability. It is therefore necessary to develop a new human model for the study of normal skin physiology and response to mechanical stress. In this study, we investigated the use of keratinocytes derived from human embryonic stem cells (hESCs) as a reliable alternative model to HaCaT for study of the effects of mechanical tension. With comparison to HaCaT, hESC-derived keratinocytes (hESC-Kert) were exposed to up to 3 days of cyclic mechanical stress, and gene expression changes were analyzed. Dynamic expression of several key mechanical stress related-genes was studied at mRNA level using qPCR. The expression of matrix-metallopeptidase9 was studied at protein level using ELISA. The two cell types displayed similar gene expression kinetics for most of the genes including E-cadherin, cateninβ1, connexin43, desmoglein1, endothelin1, integrinα6, interleukinα1, keratin1, 6, and 10, keratinocyte growth-factor-receptor and lamininα5. Unlike HaCaT, hESC-Kert displayed early gene and protein expression of matrix metallopeptidase 9 following mechanical stimulation, suggesting that these cells have remodeling capacity that resembles that of normal human skin. Our study confirmed the use of hESC-Kert as a good model for study of skin response to mechanical stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cotsarelis, G., Kaur, P., Dhouailly, D., Hengge, U., & Bickenbach, J. (1999). Epithelial stem cells in the skin: definition, markers, localization and functions. Experimental Dermatology, 8(1), 80–88.

    Article  CAS  PubMed  Google Scholar 

  2. Reichelt, J. (2007). Mechanotransduction of keratinocytes in culture and in the epidermis. European Journal of Cell Biology, 86(11–12), 807–816.

    Article  CAS  PubMed  Google Scholar 

  3. Yano, S., Komine, M., Fujimoto, M., Okochi, H., & Tamaki, K. (2004). Mechanical stretching in vitro regulates signal transduction pathways and cellular proliferation in human epidermal keratinocytes. Journal of Investigative Dermatology, 122(3), 783–790.

  4. Kippenberger, S., Loitsch, S., Guschel, M., Müller, J., Knies, Y., Kaufmann, R., & Bernd, A. (2005). Mechanical stretch stimulates protein kinase B/Akt phosphorylation in epidermal cells via angiotensin II type 1 receptor and epidermal growth factor receptor. Journal of Biological Chemistry, 280(4), 3060–3067.

    Article  CAS  PubMed  Google Scholar 

  5. Saminathan, A., Vinoth, K. J., Wescott, D. C., Pinkerton, M. N., Milne, T. J., Cao, T., & Meikle, M. C. (2012). The effect of cyclic mechanical strain on the expression of adhesion-related genes by periodontal ligament cells in two-dimensional culture. Journal of Periodontal Research, 47(2), 212–221.

    Article  CAS  PubMed  Google Scholar 

  6. Schoop, V. M., Mirancea, N., & Fusenig, N. E. (1999). Epidermal organization and differentiation of HaCaT keratinocytes in organotypic coculture with human dermal fibroblasts. Journal of Investigative Dermatology, 112(3), 343–353.

    Article  CAS  PubMed  Google Scholar 

  7. Boukamp, P., Petrussevska, R. T., Breitkreutz, D., Hornung, J., Markham, A., & Fusenig, N. E. (1988). Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. The Journal of Cell Biology, 106(3), 761–771.

    Article  CAS  PubMed  Google Scholar 

  8. Wan, H., Yuan, M., Simpson, C., Allen, K., Gavins, F. N. E., Ikram, M. S., … Hart, I. R. (2007). Stem/Progenitor cell-like properties of desmoglein 3dim cells in primary and immortalized keratinocyte lines. Stem Cells, 25(5), 1286–1297.

  9. Lee, R. T., Briggs, W. H., Cheng, G. C., Rossiter, H. B., Libby, P., & Kupper, T. (1997). Mechanical deformation promotes secretion of IL-1 alpha and IL-1 receptor antagonist. Journal of Immunology (Baltimore, Md.: 1950), 159(10), 5084–5088.

    CAS  Google Scholar 

  10. Renò, F., Traina, V., & Cannas, M. (2009). Mechanical stretching modulates growth direction and MMP-9 release in human keratinocyte monolayer. Cell Adhesion & Migration, 3(3), 239–242.

    Article  Google Scholar 

  11. Shiba, Y., Fernandes, S., Zhu, W.-Z., Filice, D., Muskheli, V., Kim, J., … Laflamme, M. A. (2012). Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature, 489(7415), 322–325.

  12. Rufaihah, A. J., Haider, H. K., Heng, B. C., Ye, L., Toh, W. S., Tian, X. F., … Cao, T. (2007). Directing endothelial differentiation of human embryonic stem cells via transduction with an adenoviral vector expressing the VEGF(165) gene. The Journal of Gene Medicine, 9(6), 452–461.

  13. Rufaihah, A. J., Haider, H. K., Heng, B. C., Ye, L., Tan, R. S., Toh, W. S., … Cao, T. (2010). Therapeutic angiogenesis by transplantation of human embryonic stem cell-derived CD133+ endothelial progenitor cells for cardiac repair. Regenerative Medicine, 5(2), 231–244.

  14. Toh, W. S., Guo, X.-M., Choo, A. B., Lu, K., Lee, E. H., & Cao, T. (2009). Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro. Journal of Cellular and Molecular Medicine, 13(9B), 3570–3590.

    Article  PubMed  Google Scholar 

  15. Toh, W. S., Lee, E. H., Guo, X.-M., Chan, J. K. Y., Yeow, C. H., Choo, A. B., & Cao, T. (2010). Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials, 31(27), 6968–6980.

    Article  CAS  PubMed  Google Scholar 

  16. Cao, T., Heng, B. C., Ye, C. P., Liu, H., Toh, W. S., Robson, P., … Stanton, L. W. (2005). Osteogenic differentiation within intact human embryoid bodies result in a marked increase in osteocalcin secretion after 12 days of in vitro culture, and formation of morphologically distinct nodule-like structures. Tissue & Cell, 37(4), 325–334.

  17. Heng, B. C., Toh, W. S., Pereira, B. P., Tan, B. L., Fu, X., Liu, H., … Cao, T. (2008). An autologous cell lysate extract from human embryonic stem cell (hESC) derived osteoblasts can enhance osteogenesis of hESC. Tissue & Cell, 40(3), 219–228.

  18. Zhang, S. C., Wernig, M., Duncan, I. D., Brüstle, O., & Thomson, J. A. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnology, 19(12), 1129–1133.

    Article  CAS  PubMed  Google Scholar 

  19. Kidwai, F. K., Liu, H., Toh, W. S., Fu, X., Jokhun, D. S., Movahednia, M. M., … Cao, T. (2013). Differentiation of human embryonic stem cells into clinically amenable keratinocytes in an autogenic environment. The Journal of Investigative Dermatology, 133(3), 618–628.

  20. Hay, D. C., Zhao, D., Fletcher, J., Hewitt, Z. A., McLean, D., Urruticoechea-Uriguen, A., … Cui, W. (2008). Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells (Dayton, Ohio), 26(4), 894–902.

  21. Barrandon, Y., Grasset, N., Zaffalon, A., Gorostidi, F., Claudinot, S., Droz-Georget, S. L., … Rochat, A. (2012). Capturing epidermal stemness for regenerative medicine. Seminars in Cell & Developmental Biology, 23(8), 937–944.

  22. Kidwai, F. K., Jokhun, D. S., Movahednia, M. M., Yeo, J. F., Tan, K. S., & Cao, T. (2013). Human embryonic stem cells derived keratinocyte as an in vitro research model for the study of immune response. Journal of Oral Pathology & Medicine: Official Publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology, 42(8), 627–634.

    Article  CAS  Google Scholar 

  23. Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., … Benvenisty, N. (2000). Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Molecular Medicine (Cambridge, Mass.), 6(2), 88–95.

  24. Fu, X., Toh, W. S., Liu, H., Lu, K., Li, M., Hande, M. P., & Cao, T. (2009). Autologous feeder cells from embryoid body outgrowth support the long-term growth of human embryonic stem cells more effectively than those from direct differentiation. Tissue Engineering. Part C, Methods, 16(4), 719–733.

    Article  Google Scholar 

  25. Hall, J. E. (2010). Guyton and hall textbook of medical physiology: Enhanced E-book. Philadelphia: Elsevier Health Sciences.

    Google Scholar 

  26. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402–408.

    Article  CAS  PubMed  Google Scholar 

  27. Vasioukhin, V., Bauer, C., Yin, M., & Fuchs, E. (2000). Directed actin polymerization is the driving force for epithelial cell–cell adhesion. Cell, 100(2), 209–219.

  28. Gumbiner, B. M. (1996). Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 84(3), 345–357.

  29. Richard, G. (2000). Connexins: a connection with the skin. Experimental Dermatology, 9(2), 77–96.

    Article  CAS  PubMed  Google Scholar 

  30. Qiu, C., Coutinho, P., Frank, S., Franke, S., Law, L., Martin, P., … Becker, D. L. (2003). Targeting connexin43 expression accelerates the rate of wound repair. Current Biology, 13(19), 1697–1703.

  31. Ishida-Yamamoto, A., & Igawa, S. (2014). Genetic skin diseases related to desmosomes and corneodesmosomes. Journal of Dermatological Science, 74(2), 99–105.

    Article  CAS  PubMed  Google Scholar 

  32. Kurita, M., Okazaki, M., Fujino, T., Takushima, A., & Harii, K. (2011). Cyclic stretch induces upregulation of endothelin-1 with keratinocytes in vitro: possible role in mechanical stress-induced hyperpigmentation. Biochemical and Biophysical Research Communications, 409(1), 103–107.

  33. Stow, L. R., Jacobs, M. E., Wingo, C. S., & Cain, B. D. (2011). Endothelin-1 gene regulation. The FASEB Journal, 25(1), 16–28.

    Article  PubMed Central  CAS  Google Scholar 

  34. Nanba, D., Toki, F., Matsushita, N., Matsushita, S., Higashiyama, S., & Barrandon, Y. (2013). Actin filament dynamics impacts keratinocyte stem cell maintenance. EMBO Molecular Medicine, 5(4), 640–653.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Johnston, A., Gudjonsson, J. E., Aphale, A., Guzman, A. M., Stoll, S. W., & Elder, J. T. (2011). EGFR and IL-1 signaling synergistically promote keratinocyte antimicrobial defenses in a differentiation-dependent manner. Journal of Investigative Dermatology, 131(2), 329–337.

  36. Toda, K., Tuan, T. L., Brown, P. J., & Grinnell, F. (1987). Fibronectin receptors of human keratinocytes and their expression during cell culture. The Journal of cell biology, 105(6 Pt 2), 3097–3104.

    Article  CAS  PubMed  Google Scholar 

  37. Inoue, T., Nabeshima, K., Shimao, Y., Meng, J.-Y., & Koono, M. (2001). Regulation of fibronectin expression and splicing in migrating epithelial cells: migrating MDCK cells produce a lesser amount of, but more active, fibronectin. Biochemical and Biophysical Research Communications, 280(5), 1262–1268.

  38. Eisenberg, E., & Levanon, E. Y. (2013). Human housekeeping genes, revisited. Trends in Genetics, 29(10), 569–574.

    Article  CAS  PubMed  Google Scholar 

  39. Tarze, A., Deniaud, A., Le Bras, M., Maillier, E., Molle, D., Larochette, N., … Brenner, C. (2006). GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization. Oncogene, 26(18), 2606–2620.

    Article  PubMed  Google Scholar 

  40. Brown, T. A., Gil, S. G., Sybert, V. P., Lestringant, G. G., Tadini, G., Caputo, R., & Carter, W. G. (1996). Defective integrin α6β4 expression in the skin of patients with junctional epidermolysis bullosa and pyloric atresia. Journal of Investigative Dermatology, 107(3), 384–391.

  41. Feliciani, C., Gupta, A. K., & Sauder, D. N. (1996). Keratinocytes and cytokine/growth factors. Critical reviews in oral biology and medicine: an official publication of the American Association of Oral Biologists, 7(4), 300–318.

    Article  CAS  Google Scholar 

  42. Swensson, O., Langbein, L., McMillan, J. R., Stevens, H. P., Leigh, I. M., McLean, W. H., … Eady, R. A. (1998). Specialized keratin expression pattern in human ridged skin as an adaptation to high physical stress. The British journal of dermatology, 139(5), 767–775.

    Article  CAS  PubMed  Google Scholar 

  43. Russell, D., Andrews, P. D., James, J., & Lane, E. B. (2004). Mechanical stress induces profound remodelling of keratin filaments and cell junctions in epidermolysis bullosa simplex keratinocytes. Journal of Cell Science, 117(22), 5233–5243.

    Article  CAS  PubMed  Google Scholar 

  44. Pan, Z.-Z., Devaux, Y., & Ray, P. (2004). Ribosomal S6 kinase as a mediator of keratinocyte growth factor-induced activation of Akt in epithelial cells. Molecular Biology of the Cell, 15(7), 3106–3113.

  45. Marchese, C., Chedid, M., Dirsch, O. R., Csaky, K. G., Santanelli, F., Latini, C., … Aaronson, S. A. (1995). Modulation of keratinocyte growth factor and its receptor in reepithelializing human skin. The Journal of experimental medicine, 182(5), 1369–1376.

    Article  CAS  PubMed  Google Scholar 

  46. Rousselle, P., Keene, D. R., Ruggiero, F., Champliaud, M.-F., Rest, M. van der, & Burgeson, R. E. (1997). Laminin 5 binds the NC-1 domain of type VII collagen. The Journal of Cell Biology, 138(3), 719–728.

  47. Natarajan, E., Omobono II, J. D., Guo, Z., Hopkinson, S., Lazar, A. J. F., Brenn, T., … Rheinwald, J. G. (2006). A keratinocyte hypermotility/growth-arrest response involving Laminin 5 and p16INK4A activated in wound healing and senescence. The American Journal of Pathology, 168(6), 1821–1837.

  48. Wang, Y.-N., & Sanders, J. E. (2003). How does skin adapt to repetitive mechanical stress to become load tolerant? Medical Hypotheses, 61(1), 29–35.

    Article  PubMed  Google Scholar 

  49. Chavez-Munoz, C., Nguyen, K. T., Xu, W., Hong, S.-J., Mustoe, T. A., & Galiano, R. D. (2013). Transdifferentiation of adipose-derived stem cells into keratinocyte-like cells: engineering a stratified epidermis. PLoS ONE, 8(12), e80587.

  50. Szabo, A. Z., Fong, S., Yue, L., Zhang, K., Strachan, L. R., Scalapino, K., … Ghadially, R. (2013). The CD44+ALDH+ population of human keratinocytes is enriched for epidermal stem cells with long-term repopulating ability. STEM CELLS, 31(4), 786–799.

  51. Yano, S., Ito, Y., Fujimoto, M., Hamazaki, T. S., Tamaki, K., & Okochi, H. (2005). Characterization and localization of side population cells in mouse skin. Stem cells (Dayton, Ohio), 23(6), 834–841.

    Article  CAS  Google Scholar 

  52. Bamberger, C., Pollet, D., & Schmale, H. (2002). Retinoic acid inhibits downregulation of ΔNp63α expression during terminal differentiation of human primary keratinocytes. Journal of Investigative Dermatology, 118(1), 133–138.

  53. Lorch, J. H., Klessner, J., Park, J. K., Getsios, S., Wu, Y. L., Stack, M. S., & Green, K. J. (2004). Epidermal growth factor receptor inhibition promotes desmosome assembly and strengthens intercellular adhesion in squamous cell carcinoma cells. Journal of Biological Chemistry, 279(35), 37191–37200.

  54. Powell, H. M., McFarland, K. L., Butler, D. L., Supp, D. M., & Boyce, S. T. (2009). Uniaxial strain regulates morphogenesis, gene expression, and tissue strength in engineered skin. Tissue Engineering Part A, 16(3), 1083–1092.

  55. Turchi, L., Chassot, A.-A., Bourget, I., Baldescchi, C., Ortonne, J. P.,Meneguzzi, G., … Ponzio, G. (2003). Cross-talk between rhoGTPases and stress activated kinases for matrix metalloproteinase-9 induction in response to keratinocytes injury. Journal of Investigative Dermatology, 121(6), 1291–1300.

  56. Flitney, E. W., Kuczmarski, E. R., Adam, S. A., & Goldman, R. D. (2009). Insights into the mechanical properties of epithelial cells: the effects of shear stress on the assembly and remodeling of keratin intermediate filaments. The FASEB Journal, 23(7), 2110–2119.

  57. Morley, S. M., D’Alessandro, M., Sexton, C., Rugg, E. L., Navsaria, H., Shemanko, C. S., … Lane, E. B. (2003). Generation and characterization of epidermolysis bullosa simplex cell lines: scratch assays show faster migration with disruptive keratin mutations. The British Journal of Dermatology, 149(1), 46–58.

  58. Liovic, M., D’Alessandro, M., Tomic-Canic, M., Bolshakov, V. N., Coats, S. E., & Lane, E. B. (2009). Severe keratin 5 and 14 mutations induce down-regulation of junction proteins in keratinocytes. Experimental Cell Research, 315(17), 2995–3003.

  59. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

  60. Rosa, V., Toh, W. S., Cao, T., & Shim, W. (2014). Inducing pluripotency for disease modeling, drug development and craniofacial applications. Expert Opinion on Biological Therapy, 14(9), 1233–1240.

Download references

Acknowledgments

We acknowledge Dr. Victoria Mouvet for her critical reading of the manuscript. We are also grateful with Prof. Vinicius Rosa to allow us to use his facilities in this project. This work was partially supported by grants from Academic Research Fund, Singapore Ministry of Education: R221000023112 and R221000067133, National University Health System: R221000053515 and R221000070733, and EPFL, the Swiss Federal Institute of Technology Lausanne.

Disclosures

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Seong Toh or Tong Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherbuin, T., Movahednia, M.M., Toh, W.S. et al. Investigation of Human Embryonic Stem Cell-Derived Keratinocytes as an In Vitro Research Model for Mechanical Stress Dynamic Response. Stem Cell Rev and Rep 11, 460–473 (2015). https://doi.org/10.1007/s12015-014-9565-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9565-5

Keywords

Navigation