Skip to main content

Advertisement

Log in

Reduced Serum and Hypoxic Culture Conditions Enhance the Osteogenic Potential of Human Mesenchymal Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Current protocols for inducing osteogenic differentiation in mesenchymal stem/stromal cells (MSCs) in culture for tissue engineering applications depend on the use of biochemical supplements. However, standard in vitro culture conditions expose cells to ambient oxygen concentrations and high levels of serum (21 % O2, 10 % FBS) that do not accurately recapitulate the physiological milieu. While we and others have examined MSC behavior under hypoxia, the synergistic effect of low serum levels, such as those present in ischemic injury sites, on osteogenic differentiation has not been clearly examined. We hypothesized that a concomitant reduction of serum and O2 would enhance in vitro osteogenic differentiation of MSCs by more accurately mimicking the fracture microenvironment. We show that serum deprivation, in conjunction with hypoxia, potentiates osteogenic differentiation in MSCs. These data demonstrate the role of serum levels in regulating osteogenesis and its importance in optimizing MSC differentiation strategies.

Highlights

  • Serum levels, in addition to hypoxia, have a significant effect on MSC osteogenic differentiation.

  • Both naïve and osteogenically induced MSCs exhibit higher osteogenic markers in reduced serum.

  • MSCs deposit the most calcium under 5 % O2 in osteogenic media supplemented with 5 % FBS.

  • Standard culture conditions (21 % O2, 10 % FBS) may not be optimal for MSC osteogenic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bruder, S. P., Fink, D. J., & Caplan, A. I. (1994). Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. Journal of Cellular Biochemistry, 56, 283–294.

    Article  CAS  PubMed  Google Scholar 

  2. Caplan, A. I. (2007). Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of Cellular Physiology, 213, 341–347.

    Article  CAS  PubMed  Google Scholar 

  3. Caplan, A. I. (2009). New era of cell-based orthopedic therapies. Tissue engineering Part B, Reviews, 15, 195–200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Baksh, D., Song, L., & Tuan, R. S. (2004). Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. Journal of Cellular and Molecular Medicine, 8, 301–316.

    Article  CAS  PubMed  Google Scholar 

  5. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    Article  CAS  PubMed  Google Scholar 

  6. Park, D., Spencer, J. A., Koh, B. I., et al. (2012). Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell, 10, 259–272.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Peter, S. J., Liang, C. R., Kim, D. J., Widmer, M. S., & Mikos, A. G. (1998). Osteoblastic phenotype of rat marrow stromal cells cultured in the presence of dexamethasone, beta-glycerolphosphate, and L-ascorbic acid. Journal of Cellular Biochemistry, 71, 55–62.

    Article  CAS  PubMed  Google Scholar 

  8. Jaiswal, N., Haynesworth, S. E., Caplan, A. I., & Bruder, S. P. (1997). Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. Journal of Cellular Biochemistry, 64, 295–312.

    Article  CAS  PubMed  Google Scholar 

  9. Viateau, V., Guillemin, G., Bousson, V., et al. (2007). Long-bone critical-size defects treated with tissue-engineered grafts: a study on sheep. Journal of orthopaedic research : official publication of the Orthopaedic Research Society, 25, 741–749.

    Article  Google Scholar 

  10. Schmitt, A., van Griensven, M., Imhoff, A. B., & Buchmann, S. (2012). Application of stem cells in orthopedics. Stem Cells International, 2012, 394962.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Brighton, C. T., & Krebs, A. G. (1972). Oxygen tension of healing fractures in the rabbit. The Journal of Bone and Joint Surgery. American Volume, 54, 323–332.

    CAS  PubMed  Google Scholar 

  12. R.B. Heppenstall, G. Grislis, T.K. Hunt, Tissue gas tensions and oxygen consumption in healing bone defects, Clinical orthopaedics and related research, (1975) 357–365

  13. Ma, T., Grayson, W. L., Frohlich, M., & Vunjak-Novakovic, G. (2009). Hypoxia and stem cell-based engineering of mesenchymal tissues. Biotechnology Progress, 25, 32–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Vater, C., Kasten, P., & Stiehler, M. (2011). Culture media for the differentiation of mesenchymal stromal cells. Acta Biomaterialia, 7, 463–477.

    Article  CAS  PubMed  Google Scholar 

  15. Dai, Y., Xu, M., Wang, Y., Pasha, Z., Li, T., & Ashraf, M. (2007). HIF-1alpha induced-VEGF overexpression in bone marrow stem cells protects cardiomyocytes against ischemia. Journal of Molecular and Cellular Cardiology, 42, 1036–1044.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Liu, L., Yu, Q., Lin, J., et al. (2011). Hypoxia-inducible factor-1alpha is essential for hypoxia-induced mesenchymal stem cell mobilization into the peripheral blood. Stem Cells and Development, 20, 1961–1971.

    Article  CAS  PubMed  Google Scholar 

  17. D’Ippolito, G., Diabira, S., Howard, G. A., Roos, B. A., & Schiller, P. C. (2006). Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone, 39, 513–522.

    Article  PubMed  Google Scholar 

  18. He, J., Genetos, D. C., Yellowley, C. E., & Leach, J. K. (2010). Oxygen tension differentially influences osteogenic differentiation of human adipose stem cells in 2D and 3D cultures. Journal of Cellular Biochemistry, 110, 87–96.

    CAS  PubMed  Google Scholar 

  19. Li, J., & Pei, M. (2012). Cell senescence: a challenge in cartilage engineering and regeneration. Tissue engineering Part B, Reviews, 18, 270–287.

    Article  CAS  PubMed  Google Scholar 

  20. Raheja, L. F., Genetos, D. C., & Yellowley, C. E. (2010). The effect of oxygen tension on the long-term osteogenic differentiation and MMP/TIMP expression of human mesenchymal stem cells. Cells, Tissues, Organs, 191, 175–184.

    Article  CAS  PubMed  Google Scholar 

  21. Hoch, A. I., Binder, B. Y., Genetos, D. C., & Leach, J. K. (2012). Differentiation-dependent secretion of proangiogenic factors by mesenchymal stem cells. PloS One, 7, e35579.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Davis, H. E., Rao, R. R., He, J., & Leach, J. K. (2009). Biomimetic scaffolds fabricated from apatite-coated polymer microspheres. Journal of Biomedical Materials Research. Part A, 90, 1021–1031.

    Article  PubMed  Google Scholar 

  23. Kang, S. W., Lee, J. S., Park, M. S., Park, J. H., & Kim, B. S. (2008). Enhancement of in vivo bone regeneration efficacy of human mesenchymal stem cells. Journal of Microbiology and Biotechnology, 18, 975–982.

    CAS  PubMed  Google Scholar 

  24. Song, L., & Tuan, R. S. (2004). Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB Journal official publication of the Federation of American Societies for Experimental Biology, 18, 980–982.

    CAS  PubMed  Google Scholar 

  25. Binder, B. Y., Genetos, D. C., & Leach, J. K. (2014). Lysophosphatidic Acid protects human mesenchymal stromal cells from differentiation-dependent vulnerability to apoptosis. Tissue Engineering. Part A, 20, 1156–1164.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Potier, E., Ferreira, E., Andriamanalijaona, R., et al. (2007). Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression. Bone, 40, 1078–1087.

    Article  CAS  PubMed  Google Scholar 

  27. Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98, 1076–1084.

    Article  CAS  PubMed  Google Scholar 

  28. Pochampally, R. R., Smith, J. R., Ylostalo, J., & Prockop, D. J. (2004). Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood, 103, 1647–1652.

    Article  CAS  PubMed  Google Scholar 

  29. Oskowitz, A., McFerrin, H., Gutschow, M., Carter, M. L., & Pochampally, R. (2011). Serum-deprived human multipotent mesenchymal stromal cells (MSCs) are highly angiogenic. Stem Cell Research, 6, 215–225.

    Article  CAS  PubMed  Google Scholar 

  30. Giannoni, P., Pagano, A., Maggi, E., et al. (2005). Autologous chondrocyte implantation (ACI) for aged patients: development of the proper cell expansion conditions for possible therapeutic applications. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society, 13, 589–600.

    Article  CAS  PubMed  Google Scholar 

  31. Chacko, S. M., Ahmed, S., Selvendiran, K., Kuppusamy, M. L., Khan, M., & Kuppusamy, P. (2010). Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells. American Journal of Physiology. Cell Physiology, 299, C1562–1570.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Rosova, I., Dao, M., Capoccia, B., Link, D., & Nolta, J. A. (2008). Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells, 26, 2173–2182.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Genetos, D. C., Toupadakis, C. A., Raheja, L. F., et al. (2010). Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts. Journal of Cellular Biochemistry, 110, 457–467.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Volkmer, E., Kallukalam, B. C., Maertz, J., et al. (2010). Hypoxic preconditioning of human mesenchymal stem cells overcomes hypoxia-induced inhibition of osteogenic differentiation. Tissue Engineering. Part A, 16, 153–164.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by grants from the National Institutes of Health 1R03DE021704 and the Orthopaedic Research and Education Foundation (#13-006) to JKL and by the California Institute for Regenerative Medicine UC Davis Stem Cell Training Program (CIRM T1-00006, CIRM TG2-01163) to BYB.

Disclosures

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kent Leach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binder, B.Y.K., Sagun, J.E. & Leach, J.K. Reduced Serum and Hypoxic Culture Conditions Enhance the Osteogenic Potential of Human Mesenchymal Stem Cells. Stem Cell Rev and Rep 11, 387–393 (2015). https://doi.org/10.1007/s12015-014-9555-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9555-7

Keywords

Navigation