Skip to main content

Advertisement

Log in

A Partially Folded State of Ovalbumin at Low pH Tends to Aggregate

  • ORIGINAL RESEARCH
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

At pH 2, ovalbumin retains native-like secondary structure as seen by far-UV CD and FTIR, but lacks well-defined tertiary structure as seen by the fluorescence and near-UV CD spectra. Addition of 20 mM Trifluoroacetic acid (TFA) or 30 mM Trichloroacetic acid (TCA) on acid-induced state results in protein aggregation. This aggregated state possesses extensive β-sheet structure as revealed by far-UV CD and FTIR spectroscopy. Furthermore, the aggregates exhibit decreased ANS fluorescence and increased thioflavin T fluorescence. The presence of aggregates was confirmed by size exclusion chromatography. Such a formation of β-sheet structure is found in the amyloid of a number of neurological diseases such as Alzheimer’s and scrapie. Ovalbumin at low pH, in the presence of K2SO4, exists in partially folded state characterized by native-like secondary structure and tertiary folds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ANS:

8-Anilino-1-naphthalene-sulfonic acid

CD:

Circular dichroism

Gdn-HCl:

Guanidine hydrochloride

ATR-FTIR:

Attenuated total reflection Fourier transform infrared spectroscopy

K2SO4 :

Potassuim sulfate

MRE:

Mean residual ellipticity

SEC:

Size exclusion chromatography

TFA:

Trifluoroacetic acid

TCA:

Trichloroacetic acid

Th T:

Thioflavin T

References

  1. Pace, C. N., Shirley, B. A., McNutt, M., & Gajiwala, K. (1996). Forces contributing to the conformational stability of proteins. FASEB Journal, 10(1), 75–83.

    CAS  PubMed  Google Scholar 

  2. Barrick, D., Hughson, F. M., & Baldwin, R. L. (1994). Molecular mechanisms of acid denaturation. The role of histidine residues in the partial unfolding of apomyoglobin. Journal of Molecular Biology, 237, 588–601.

    Article  CAS  PubMed  Google Scholar 

  3. Jaenicke, R. (1991). Protein folding: Local structure, domains, subunits, and assemblies. Biochemistry, 30, 3147–3161.

    Article  CAS  PubMed  Google Scholar 

  4. Naeem, A., Khan, A., & Khan, R. H. (2005). Partially folded intermediate state of concanavalin A retains its carbohydrate specificity. Biochemical and Biophysical Research Communications, 331, 1284–1294.

    Article  CAS  PubMed  Google Scholar 

  5. Ballery, N., Desmadril, M., Minard, P., & Yon, J. M. (1993). Characterization of an intermediate in the folding pathway of phosphoglycerate kinase: Chemical reactivity of genetically introduced cysteinyl residues during the folding process. Biochemistry, 32, 708–714.

    Article  CAS  PubMed  Google Scholar 

  6. Matousschek, A., Serrano, L., Meiering, E. M., Bycroft, M., & Ferscht, A. R. (1992). The folding of an enzyme IV. Structure of an intermediate in the refolding of barnase analyzed by a protein engineering procedure. Journal of Molecular Biology, 224, 837–845.

    Article  Google Scholar 

  7. Naeem, A., Khan, K., & Khan, R. H. (2004). Characterization of a partially folded intermediate of papain induced by fluorinated alcohols at low pH. Archives of Biochemistry and Biophysics, 432(1), 79–87.

    CAS  PubMed  Google Scholar 

  8. Goto, Y., & Nishikiori, S. (1991). Role of electrostatic repulsion in the acidic molten globule of cytochrome c. Journal of Molecular Biology, 222, 679–686.

    Article  CAS  PubMed  Google Scholar 

  9. Kumar, D. P., Tiwari, A., & Bhatt, R. (2004). Effect of pH on the stability and structure of yeast hexokinase acidic amino acid residues in the cleft region are critical for the opening and the closing of the structure. Journal of Biological Chemistry, 279, 32093–32099.

    Article  CAS  PubMed  Google Scholar 

  10. Alexander, P. A., He, Y., Chen, Y., Orban, J., & Bryan, P. N. (2007). The design and characterization of two proteins with 88% sequence identity but different structure and function. Proceedings of the National Academy of Sciences of the United States of America, 104(29), 11963–11968.

    Article  CAS  PubMed  Google Scholar 

  11. Chiti, F., Stefani, M., Taddei, N., Ramponi, G., & Dobson, C. M. (2003). Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature, 424, 805–808.

    Article  CAS  PubMed  Google Scholar 

  12. Bellotti, V., Mangione, P., & Stoppini, M. (1999). Biological activity and pathological implications of misfolded proteins. Nature Structural Biology, 6, 1010–1016.

    Article  Google Scholar 

  13. Kelly, J. W. (1998). The alternate conformations of amyloidogenic proteins and their multi-step assembly pathways. Current Opinion in Structural Biology, 8, 101–106.

    Article  CAS  PubMed  Google Scholar 

  14. Sunde, M., & Blake, C. C. F. (1997). The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Advances in Protein Chemistry, 50, 123–159.

    Article  CAS  PubMed  Google Scholar 

  15. Dobson, C. M. (1999). Protein misfolding, evolution and disease. Trends in Biochemical Sciences, 9, 329–332.

    Article  Google Scholar 

  16. Lai, Z., Colon, W., & Kelly, J. W. (1996). The acid-mediated denaturation pathway of transthyretin yields a conformational into amyloid-intermediate that can self-assemble. Biochemistry, 35, 6470–6482.

    Article  CAS  PubMed  Google Scholar 

  17. Guijarro, J. I., Sunde, M., Jones, J. A., Campbell, I. D., & Dobson, C. M. (1998). Amyloid fibril formation by an SH3 domain. Proceedings of the National Academy of Sciences of the United States of America, 95, 4224–4228.

    Article  CAS  PubMed  Google Scholar 

  18. Donnell, E. (1993). The ovalbumin family of serpin proteins. FEBS Letters, 315, 105–108.

    Article  Google Scholar 

  19. Huber, R., & Carrell, R. W. (1989). Implications of three-dimensional structure of α1 antitrypsin for structure and function of serpins. Biochemistry, 28, 8951–8966.

    Article  CAS  PubMed  Google Scholar 

  20. Stein, P. E., Leslie, A. G. W., Finch, J. T., & Carrell, R. W. (1991). Crystal structure of uncleaved ovalbumin at 1.95A resolution. Journal of Molecular Biology, 221, 941–959.

    Article  CAS  PubMed  Google Scholar 

  21. Koseki, T., Kitabatake, N., & Doi, E. (1988). Conformational changes in ovalbumin at acid pH. Journal of Biochemistry, 103, 425–430.

    CAS  PubMed  Google Scholar 

  22. Tatsumi, E., & Hirose, M. (1997). Highly ordered molten globule-like state of ovalbumin at acidic pH: Native-like fragmentation by protease and selective modification of Cys367 with dithiodipyridine. Journal of Biochemistry, 122(2), 300–308.

    CAS  PubMed  Google Scholar 

  23. Edwin, F., & Jagannadham, M. V. (1998). Sequential unfolding of papain in molten globule state. Biochemical and Biophysical Research Communications, 252, 654–660.

    Article  CAS  PubMed  Google Scholar 

  24. Edwin, F., & Jagannadham, M. V. (2000). Anion-induced folding of rabbit muscle pyruvate kinase: Existence of multiple intermediate conformations at low pH. Archives of Biochemistry and Biophysics, 381, 99–110.

    Article  CAS  PubMed  Google Scholar 

  25. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  26. Stryer, L. (1968). Fluorescence spectroscopy of proteins. Science, 162, 526–540.

    Article  CAS  PubMed  Google Scholar 

  27. Stryer, L. (1965). The interaction of a naphthalene dye with apomyoglobin and apohemoglobin, a fluorescent probe of non-polar binding sites. Journal of Molecular Biology, 13, 482–495.

    Article  CAS  PubMed  Google Scholar 

  28. Matulis, D., & Lovrien, R. (1998). 1-Anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation. Biophysical Journal, 74, 422–429.

    Article  CAS  PubMed  Google Scholar 

  29. Matulis, D., Baumann, C. G., Bloomfield, U. A., & Lovrien, R. E. (1999). 1-Anilino-8-napthelene sulfonate as a protein conformational tightening agent. Biopolymers, 49(6), 451–458.

    Article  CAS  PubMed  Google Scholar 

  30. Semisotnov, G. V., Rodionava, N. A., Razgulyaev, O. I., Uversky, V. N., Gripas, A., & Gilmanshin, R. I. (1991). Study of the molten globule intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers, 31, 119–128.

    Article  CAS  PubMed  Google Scholar 

  31. Naeem, A., Fatima, S., & Khan, R. H. (2006). Characterization of partially folded intermediates of papain in the presence of cationic, anionic and non-ionic detergents at low pH. Biopolymers, 83, 1–10.

    Article  CAS  PubMed  Google Scholar 

  32. Tatsumi, E., Yoshimatsu, D., & Hirose, M. (1999). Conformational state of disulfide-reduced ovalbumin at acidic pH. Bioscience Biotechnology and Biochemistry, 63, 1285–1290.

    Article  CAS  Google Scholar 

  33. Arrondo, J. L. R., Young, N. M., & Mantsch, H. H. (1988). The solution structure of concanavalin A probed by FTIR spectroscopy. Biochimica et Biophysica Acta, 952, 261–268.

    CAS  PubMed  Google Scholar 

  34. Chiti, F., Webstar, P., Taddei, N., Clark, A., Stefani, M., Ramponi, G., et al. (1999). Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proceedings of the National Academy of Sciences of the United States of America, 96, 3590–3594.

    Article  CAS  PubMed  Google Scholar 

  35. Muga, A., Arrondo, J. L. R., Bellon, T., Sancho, J., & Bernabeu, C. (1993). A comparative study of the conformational properties of Escherichia coli-derived rat intestinal and liver fatty acid binding proteins. Archives of Biochemistry and Biophysics, 300, 451–457.

    Article  CAS  PubMed  Google Scholar 

  36. Hartl, F. U. (1996). Molecular chaperones in cellular protein folding. Nature, 381, 571–579.

    Article  CAS  PubMed  Google Scholar 

  37. Kauffmann, E., Darton, N. C., Austin, R. H., Batt, C., & Gerwert, K. (2001). Lifetimes of intermediates in the β-sheet to α-helix transition of β-lactoglobulin by using a diffusional IR mixer. Proceedings of the National Academy of Sciences of the United States of America, 98, 6646–6649.

    Article  CAS  PubMed  Google Scholar 

  38. Fink, A. L., Calciano, L. J., Goto, Y., Kurotsu, T., & Palleros, D. R. (1994). Classification of acid denaturation of proteins: Intermediates and unfolded states. Biochemistry, 33, 12504–12511.

    Article  CAS  PubMed  Google Scholar 

  39. Tani, F., Shirai, N., Onishi, T., Venelle, F., Yasumoto, K., & Doi, E. (1997). Temperature control for kinetic refolding of heat-denatured ovalbumin. Protein Science, 6, 1491–1502.

    Article  CAS  PubMed  Google Scholar 

  40. Klausner, R. D., Kempf, C., Weinstein, J. N., Blumenthal, R., & Renswoude, J. V. (1983). The folding of ovalbumin. Biochemical Journal, 212, 801–810.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful for the facilities obtained at AMU Aligarh. Financial support from the Department of Science and Technology, New Delhi in the form of project (SR/LS-087/2007) and CSIR in the form of project No. 37(1365)/09/EMR-II is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aabgeena Naeem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naeem, A., Khan, T.A., Muzaffar, M. et al. A Partially Folded State of Ovalbumin at Low pH Tends to Aggregate. Cell Biochem Biophys 59, 29–38 (2011). https://doi.org/10.1007/s12013-010-9108-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-010-9108-x

Keywords

Navigation