Skip to main content
Log in

Nonthermal Atmospheric Argon Plasma Jet Effects on Escherichia coli Biomacromolecules

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nonthermal atmospheric plasma jet, a promising technology based on ionized gas at low temperatures, can be applied for disinfection of contaminated surfaces. In this study, Escherichia coli cells and their macromolecules were exposed to the nonthermal atmospheric argon plasma jet for different time durations. Total protein, genomic DNA, and malondialdehyde (MDA) levels of E. coli were assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining; agarose gel electrophoresis; and measurement of absorbance at 534 nm, respectively. After exposure, the spectroscopic results of liquid samples indicated that the survival reduction of E. coli can reach to 100 % in an exposure time of 600 s. Moreover, inactivation zones of E. coli, DNA degradation, and MDA levels were significantly increased. Additionally, banding patterns of total protein were changed and amino acid concentrations increased following ninhydrin test. The experimental results suggest that the nonthermal plasma could serve as an effective instrument for both sterilizing E. coli and degrading macromolecules from the surface of the objects being sterilized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

ROS:

Reactive oxygen species

UV:

Ultraviolet

LB:

Luria–Bertani

DTT:

Dithiothreitol

MDA:

Malondialdehyde

References

  1. Fridman, G., Friedman, G., Gutsol, A., et al. (2008). Plasma Processes and Polymers, 5, 503–533.

    Article  CAS  Google Scholar 

  2. Heinlin, J., Isbary, G., Stolz, W., et al. (2011). Journal of the European Academy of Dermatology and Venereology, 25, 1–11.

    Article  CAS  Google Scholar 

  3. Kayes, M. M., Critzer, F. J., Kelly-Wintenberg, K., et al. (2007). Foodborne Pathogens and Disease, 4, 50–59.

    Article  Google Scholar 

  4. Kalghatgi, S., Kelly, C., Cerchar, E., et al. (2011). PLoS ONE, 6, e16270.

    Article  CAS  Google Scholar 

  5. Kvam, E., Davis, B., Mondello, F., & Garner, A. L. (2012). Antimicrobial Agents and Chemotherapy, 56, 2028–2036.

    Article  CAS  Google Scholar 

  6. Sohbatzadeh, F., Hossienzadeh Colagar, A., Mirzanejhad, S., & Mahmodi, S. (2010). Applied Biochemistry and Biotechnology, 160, 1978–1984.

    Article  CAS  Google Scholar 

  7. Yang, L., Chen, J., & Gao, J. (2009). Journal of Electrostatics, 67, 646–651.

    Article  CAS  Google Scholar 

  8. Yasuda, H., Hashimoto, M., Rahman, M., et al. (2008). Plasma Processes and Polymers, 5, 615–621.

    Article  CAS  Google Scholar 

  9. Du, C. M., Wang, J., Zhang, L., et al. (2012). New Journal of Physics, 14, doi:10.1088/1367-2630/14/1/013010.

  10. Gaunt, L. F., Beggs, C. B., & Georghiou, G. E. (2006). IEEE Transactions on Plasma Science, 34, 1257–1269.

    Article  CAS  Google Scholar 

  11. Koban, I., Matthes, R., Hübner, N-O., et al. (2010). New Journal of Physics, 12, doi:10.1088/1367-2630/12/7/073039.

  12. Hou, Y. M., Dong, X. Y., Yu, H., et al. (2008). IEEE Transactions on Plasma Science, 36, 1633–1637.

    Article  CAS  Google Scholar 

  13. Hosseinzadeh Colagar, A., Sohbatzadeh, F., Mirzanejhad, S., & Valinataj Omran, A. (2010). Biochemical Engineering Journal, 51, 189–193.

    Article  Google Scholar 

  14. Hosseinzadeh Colagar, A., Pouramir, M., Tahmasbpour Marzony, E., & Jorsaraei, S. G. A. (2009). Brazilian Archives of Biology and Technology, 52, 1387–1392.

    Article  Google Scholar 

  15. Rao, B., Souflir, J. C., Martin, M., & David, G. (1989). Gamete Research, 24, 127–134.

    Article  CAS  Google Scholar 

  16. Song, H. P., Kim, B., Choe, J. H., et al. (2009). Food Microbiology, 26, 432–436.

    Article  CAS  Google Scholar 

  17. Cabiscol, E., Tamarit, J., & Ros, J. (2000). International Microbiology, 3, 3–8.

    CAS  Google Scholar 

  18. Alkawareek, M. Y., Algwari, Q. T., Laverty, G., et al. (2012). PLoS ONE, 7, e44289.

    Article  CAS  Google Scholar 

  19. Focea, R., Poiata, A., Motrescu, I., et al. (2012). African Journal of Biotechnology, 11, 4234–4240.

    Google Scholar 

  20. Sung, S.-J., Huh, J.-B., Yun, M.-J., et al. (2013). Journal of Advanced Prosthodontics, 5, 2–8.

    Article  Google Scholar 

  21. Venezia, R. A., Orrico, M., Houston, E., et al. (2008). Infection Control and Hospital Epidemiology, 29, 430–436.

    Article  Google Scholar 

  22. Moreau, M., Orange, N., & Feuilloley, M. G. J. (2008). Biotechnology Advances, 26, 610–617.

    Article  CAS  Google Scholar 

  23. Joshi, S. G., Cooper, M., Yost, A., et al. (2011). Antimicrobial Agents and Chemotherapy, 55, 1053–1062.

    Article  CAS  Google Scholar 

  24. Niedernhofer, L. J., Daniels, J. S., Rouzer, C. A., et al. (2003). The Journal of Biological Chemistry, 278, 31426–31433.

    Article  CAS  Google Scholar 

  25. Dobrynin, D., Fridman, G., Friedman, G., & Fridman, A. (2009). New Journal of Physics, 11, 115020.

    Article  Google Scholar 

  26. Dubovskiy, I. M., Martemyanov, V. V., Vorontsova, Y. L., et al. (2008). Comparative Biochemistry and Physiology Part C, 148, 1–5.

    CAS  Google Scholar 

  27. Devasagayam, T. P. A., Boloor, K. K., & Ramasarma, T. (2003). Indian Journal of Biochemistry & Biophysics, 40, 300–308.

    CAS  Google Scholar 

  28. Laroussi, M. (2005). Plasma Processes and Polymers, 2, 391–400.

    Article  CAS  Google Scholar 

  29. Goldberg, H. A., & Warner, K. J. (1997). Analytical Biochemistry, 251, 227–233.

    Article  CAS  Google Scholar 

  30. Kumar, A., Kumar, V., & Upadhyay, K. K. (2011). Tetrahedron Letters, 52, 6809–6813.

    Article  CAS  Google Scholar 

  31. Kim, S.-M., & Kim, J.-I. (2006). The Journal of Microbiology, 44, 466–471.

    CAS  Google Scholar 

Download references

Acknowledgments

This investigation was supported by a biotechnology grant (ID: 33/D/379) from the University of Mazandaran Research and Technology Deputy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abasalt Hosseinzadeh Colagar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseinzadeh Colagar, A., Memariani, H., Sohbatzadeh, F. et al. Nonthermal Atmospheric Argon Plasma Jet Effects on Escherichia coli Biomacromolecules. Appl Biochem Biotechnol 171, 1617–1629 (2013). https://doi.org/10.1007/s12010-013-0430-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0430-9

Keywords

Navigation