Skip to main content

Advertisement

Log in

Biomarkers in Psoriatic Arthritis: Recent Progress

  • Psoriatic Arthritis (O FitzGerald and P Helliwell, Section Editors)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Psoriatic arthritis (PsA) is an inflammatory arthritis associated with psoriasis. About a quarter of patients with psoriasis of the skin will develop PsA, although it is currently challenging—if not impossible—to determine a priori which individuals will progress. Identification of biomarkers for screening, disease activity, joint damage, treatment response and comorbidities are therefore perceived as important clinical needs in the field. Over the last few years, several lines of investigation have advanced our knowledge of new markers for PsA and its outcomes, including genomic, proteomic, cellular and tissue studies. Imaging studies utilizing ultrasonography have been applied to better understand the natural history of the disease. Novel biomarkers, such as soluble proteins and microbiomics, are also being described. Although no biomarker has yet been validated for use in clinical practice, discovery studies are in progress and validation cohorts are being designed. In this report, we review the latest progress in biomarker research in PsA and its potential implications in pathogenesis, diagnosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5:463–6.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.

    Article  Google Scholar 

  3. Wright V, Moll JMH. Psoriatic arthritis. In Seronegative polyarthritis. North Holland Publishing Co., 1976; pp 169–223.

  4. Taylor W, Gladman D, Helliwell P, et al. Classification criteria for psoriatic arthritis: development of new criteria from a large international study. Arthritis Rheum. 2006;54:2665–73.

    Article  PubMed  Google Scholar 

  5. Chandran V, Gladman DD. Update on biomarkers in psoriatic arthritis. Curr Rheumatol Rep. 2010;12:288–94.

    Article  PubMed  CAS  Google Scholar 

  6. Chandran V, Bull SB, Pellett FJ, et al. Human leukocyte antigen alleles and susceptibility to psoriatic arthritis. Hum Immunol. 2013;74:1333–8.

    Article  PubMed  CAS  Google Scholar 

  7. Eder L, Chandran V, Pellet F, et al. Human leucocyte antigen risk alleles for psoriatic arthritis among patients with psoriasis. Ann Rheum Dis. 2012;71:50–5. This study identified HLA markers associated with PsA among patients with psoriasis.

    Article  PubMed  Google Scholar 

  8. Winchester R, Minevich G, Steshenko V, et al. HLA associations reveal genetic heterogeneity in psoriatic arthritis and in the psoriasis phenotype. Arthritis Rheum. 2012;64:1134–44. This study identified HLA markers associated with PsA among patients with psoriasis.

    Article  PubMed  CAS  Google Scholar 

  9. Pollock R, Chandran V, Barrett J, et al. Differential major histocompatibility complex class I chain-related A allele associations with skin and joint manifestations of psoriatic disease. Tissue Antigens. 2011;77:554–61.

    Article  PubMed  CAS  Google Scholar 

  10. Rahman P, Roslin NM, Pellett FJ, et al. High resolution mapping in the major histocompatibility complex region identifies multiple independent novel loci for psoriatic arthritis. Ann Rheum Dis. 2011;70:690–4.

    Article  PubMed  CAS  Google Scholar 

  11. Murdaca G, Gulli R, Spanò F, et al. TNF-α gene polymorphisms: association with disease susceptibility and response to anti-TNF-α treatment in psoriatic arthritis. J Invest Dermatol. 2014. doi:10.1038/jid.2014.123.

    PubMed  Google Scholar 

  12. Giardina E, Hüffmeier U, Ravindran J, et al. Tumor necrosis factor promoter polymorphism TNF*-857 is a risk allele for psoriatic arthritis independent of the PSORS1 locus. Arthritis Rheum. 2011;63:3801–6.

    Article  PubMed  CAS  Google Scholar 

  13. Zhu J, Qu H, Chen X, et al. Single nucleotide polymorphisms in the tumor necrosis factor-alpha gene promoter region alter the risk of psoriasis vulgaris and psoriatic arthritis: a meta-analysis. PLoS One. 2013;8:e64376. doi:10.1371/journal.pone.0064376.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Jadon D, Tillett W, Wallis D, et al. Exploring ankylosing spondylitis-associated ERAP1, IL23R and IL12B gene polymorphisms in subphenotypes of psoriatic arthritis. Rheumatology (Oxford). 2013;52:261–6.

    Article  CAS  Google Scholar 

  15. Bowes J, Eyre S, Flynn E, et al. Evidence to support IL-13 as a risk locus for psoriatic arthritis but not psoriasis vulgaris. Ann Rheum Dis. 2011;70:1016–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eder L, Chandran V, Pellett F, et al. IL13 gene polymorphism is a marker for psoriatic arthritis among psoriasis patients. Ann Rheum Dis. 2011;70:1594–8.

    Article  PubMed  CAS  Google Scholar 

  17. Eirís N, González-Lara L, Santos-Juanes J, et al. Genetic variation at IL12B, IL23R and IL23A is associated with psoriasis severity, psoriatic arthritis and type 2 diabetes mellitus. J Dermatol Sci. 2014;75:167–72.

  18. Popa OM, Kriegova E, Popa L, et al. Association study in Romanians confirms IL23A gene haplotype block rs2066808/rs11171806 as conferring risk to psoriatic arthritis. Cytokine. 2013;63:67–73.

    Article  PubMed  CAS  Google Scholar 

  19. Bowes J, Orozco G, Flynn E, et al. Confirmation of TNIP1 and IL23A as susceptibility loci for psoriatic arthritis. Ann Rheum Dis. 2011;70:1641–4.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chandran V, Bull SB, Pellett FJ, et al. Killer-cell immunoglobulin-like receptor gene polymorphisms and susceptibility to psoriatic arthritis. Rheumatology (Oxford). 2014;53:233–9.

    Article  CAS  Google Scholar 

  21. Apel M, Uebe S, Bowes J, et al. Variants in RUNX3 contribute to susceptibility to psoriatic arthritis, exhibiting further common ground with ankylosing spondylitis. Arthritis Rheum. 2013;65:1224–31.

    Article  PubMed  CAS  Google Scholar 

  22. Bowes J, Ho P, Flynn E, et al. Comprehensive assessment of rheumatoid arthritis susceptibility loci in a large psoriatic arthritis cohort. Ann Rheum Dis. 2012;71:1350–4. This study explored RA susceptibility loci in PsA and demonstrated that genetically the two diseases are very different.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Benham H, Norris P, Goodall J, et al. Th17 and Th22 cells in psoriatic arthritis and psoriasis. Arthritis Res Ther. 2013;15:R136.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Menon B, Gullick NJ, Walter GJ, et al. Interleukin-17+ CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. Arthritis Rheumatol. 2014;66:1272–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Sherlock JP, Joyce-Shaikh B, Turner SP, et al. IL-23 induces pondyloarthropathy by acting on ROR-γt + CD3 + CD4-CD8- entheseal resident T cells. Nat Med. 2012;18:1069–76. This paper demonstrated in an animal model that a unique population of resident T cells reside in the entheses, which, when activated by the cytokine interleukin-23 (IL-23), can promote pathogenesis that is characteristic of spondyloarthritis.

    Article  PubMed  CAS  Google Scholar 

  26. Hüffmeier U, Uebe S, Ekici AB, et al. Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis and psoriasis. Nat Genet. 2010;42:996–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ellinghaus E, Stuart PE, Ellinghaus D, et al. Genome-wide meta-analysis of psoriatic arthritis identifies susceptibility locus at REL. J Invest Dermatol. 2012;132:1133–40. This meta-analysis of three imputed genome-wide association studies (GWAS) on psoriasis, stratified for PsA, identified the REL locus encoding c-Rel as a marker for psoriatic arthritis.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Ramírez J, Fernández-Sueiro JL, López-Mejías R, et al. FCGR2A/CD32A and FCGR3A/CD16A variants and EULAR response to tumor necrosis factor-α blockers in psoriatic arthritis: a longitudinal study with 6 months of followup. J Rheumatol. 2012;39:1035–41.

    Article  PubMed  Google Scholar 

  29. Tejasvi T, Stuart PE, Chandran V, et al. TNFAIP3 gene polymorphisms are associated with response to TNF blockade in psoriasis. J Invest Dermatol. 2012;132:593–600.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Ramonda R, Modesti V, Ortolan A, et al. Serological markers in psoriatic arthritis: promising tools. Exp Biol Med (Maywood). 2013;238:1431–6.

    Article  Google Scholar 

  31. Dalmády S, Kiss M, Képíró L, et al. Higher levels of autoantibodies targeting mutated citrullinated vimentin in patients with psoriatic arthritis than in patients with psoriasis vulgaris. Clin Dev Immunol. 2013;2013:474028.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jensen P, Wiell C, Milting K, et al. Plasma YKL-40: a potential biomarker for psoriatic arthritis? J Eur Acad Dermatol Venereol. 2013;27:815–9.

    Article  PubMed  CAS  Google Scholar 

  33. Dalbeth N, Pool B, Smith T, et al. Circulating mediators of bone remodeling in psoriatic arthritis: implications for disordered osteoclastogenesis and bone erosion. Arthritis Res Ther. 2010;12:R164.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wagner CL, Visvanathan S, Elashoff M, et al. Markers of inflammation and bone remodelling associated with improvement in clinical response measures in psoriatic arthritis patients treated with golimumab. Ann Rheum Dis. 2013;72:83–8. This study identified a biomarker panel for treatment response and demonstrated that the power of the biomarker panel to predict clinical response to golimumab treatment was stronger than for CRP alone.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Chiu YH, Mensah KA, Schwarz EM, et al. Regulation of human osteoclast development by dendritic cell-specific transmembrane protein (DC-STAMP). J Bone Miner Res. 2012;27:79–92.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Fiocco U, Sfriso P, Oliviero F, et al. Synovial effusion and synovial fluid biomarkers in psoriatic arthritis to assess intraarticular tumor necrosis factor-α blockade in the knee joint. Arthritis Res Ther. 2010;12:R148.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pontifex EK, Gerlag DM, Gogarty M, et al. Change in CD3 positive T-cell expression in psoriatic arthritis synovium correlates with change in DAS28 and magnetic resonance imaging synovitis scores following initiation of biologic therapy–a single centre, open-label study. Arthritis Res Ther. 2011;13:R7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. van Kuijk AW, Gerlag DM, Vos K, et al. A prospective, randomised, placebo-controlled study to identify biomarkers associated with active treatment in psoriatic arthritis: effects of adalimumab treatment on synovial tissue. Ann Rheum Dis. 2009;68:1303–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cretu D, Prassas I, Saraon P, et al. Identification of psoriatic arthritis mediators in synovial fluid by quantitative mass spectrometry. Clin Proteomics. 2014;11:27.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Coates LC, Hodgson R, Conaghan PG, et al. MRI and ultrasonography for diagnosis and monitoring of psoriatic arthritis. Best Pract Res Clin Rheumatol. 2012;26:805–22.

    Article  PubMed  Google Scholar 

  41. Eder L, Jayakar J, Thavaneswaran A, et al. Is the MAdrid Sonographic Enthesitis Index useful for differentiating psoriatic arthritis from psoriasis alone and healthy controls? J Rheumatol. 2014;41:466–72. This study demonstrated that ultrasound evaluation of the entheses using the MASEI has high specificity for identifying PsA.

    Article  PubMed  Google Scholar 

  42. Poggenborg RP, Eshed I, Ostergaard M, et al. Enthesitis in patients with psoriatic arthritis, axial spondyloarthritis and healthy subjects assessed by ‘head-to-toe’ whole-body MRI and clinical examination. Ann Rheum Dis. 2014. doi:10.1136/annrheumdis-2013-204239.

    PubMed  Google Scholar 

  43. Mease P, Genovese MC, Gladstein G, et al. Abatacept in the treatment of patients with psoriatic arthritis: results of a six-month, multicenter, randomized, double-blind, placebo-controlled, phase II trial. Arthritis Rheum. 2011;63:939–48.

    Article  PubMed  CAS  Google Scholar 

  44. McQueen F, Lloyd R, Doyle A, et al. Zoledronic acid does not reduce MRI erosive progression in PsA but may suppress bone oedema: the Zoledronic Acid in Psoriatic Arthritis (ZAPA) Study. Ann Rheum Dis. 2011;70:1091–4.

    Article  PubMed  CAS  Google Scholar 

  45. Alekseyenko AV, Perez-Perez GI, De Souza A, et al. Community differentiation of the cutaneous microbiota in psoriasis. Microbiome. 2013;1:31.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Scher JU, Sczesnak A, Longman RS, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife. 2013;2:e01202.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Vinod Chandran declares that he is supported by the Psoriatic Arthritis Program, University Health Network as well as the Department of Medicine, University of Toronto. His research is supported by grants from the Canadian Institutes of Health Research, Abbvie Canada and the Krembil Foundation.

Jose U. Scher declares that support for this work comes from Grant No. K23AR064318 from National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS); the New York University Psoriatic Arthritis Center (Division of Rheumatology and Department of Medicine, New York University School of Medicine); and from The Riley Family Foundation.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Chandran.

Additional information

This article is part of the Topical Collection on Psoriatic Arthritis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandran, V., Scher, J.U. Biomarkers in Psoriatic Arthritis: Recent Progress. Curr Rheumatol Rep 16, 453 (2014). https://doi.org/10.1007/s11926-014-0453-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-014-0453-4

Keywords

Navigation