Skip to main content
Log in

Integral foliated simplicial volume of aspherical manifolds

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Simplicial volumes measure the complexity of fundamental cycles of manifolds. In this article, we consider the relation between the simplicial volume and two of its variants — the stable integral simplicial volume and the integral foliated simplicial volume. The definition of the latter depends on a choice of a measure preserving action of the fundamental group on a probability space.

We show that the integral foliated simplicial volume is monotone with respect to weak containment of measure preserving actions and yields upper bounds on (integral) homology growth.

Using ergodic theory we prove that the simplicial volume, integral foliated simplicial volume and stable integral simplicial volume coincide for closed hyperbolic 3-manifolds and closed aspherical manifolds with an amenable residually finite fundamental group (being equal to zero in the latter case).

However, we show that the integral foliated simplicial volume and the classical simplicial volume do not coincide for hyperbolic manifolds of dimension at least 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abért and N. Nikolov, Rank gradient,cost of groups and the rank versus Heegaard genus problem, J. Eur. Math. Soc. (JEMS) 14 (2012), 1657–1677.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Abért and B. Weiss, Bernoulli actions are weakly contained in any free action, Ergodic Theory Dynam. Systems 33 (2013), 323–333.

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Agol, The virtual Haken conjecture, Doc. Math. 18 (2013), 1045–1087, With an appendix by Agol, Daniel Groves, and Jason Manning.

    MathSciNet  MATH  Google Scholar 

  4. L. Bowen and R. D. Tucker-Drob, On a co-induction question of Kechris, Israel J. Math. 194 (2013), 209–224.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Cheeger and M. Gromov, L2-cohomology and group cohomology, Topology 25 (1986), 189–215.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Farber, Geometry of growth: approximation theorems for L2 invariants, Math. Ann. 311 (1998), 335–375.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Foreman and B. Weiss, An anti-classification theorem for ergodic measure preserving transformations, J. Eur. Math. Soc. (JEMS) 6 (2004), 277–292.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Francaviglia, R. Frigerio and B. Martelli, Stable complexity and simplicial volume of manifolds, J. Topol. 5 (2012), 977–1010.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Gaboriau, Côut des relations d’équivalence et des groupes, Invent. Math. 139 (2000), 41–98.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Gromov, Asymptotic invariants of infinite groups, in Geometric group theory, Vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser., Vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295.

    Google Scholar 

  11. M. Gromov, Volume and bounded cohomology, Inst. Hautes études Sci. Publ. Math. (1982), 5–99 (1983).

    Google Scholar 

  12. M. Gromov, Singularities, expanders and topology of maps. I. Homology versus volume in the spaces of cycles, Geom. Funct. Anal. 19 (2009), 743–841.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, Vol. 152, Birkhäuser Boston, Inc., Boston, MA, 1999.

    Google Scholar 

  14. A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.

    MATH  Google Scholar 

  15. N. V. Ivanov, Foundations of the theory of bounded cohomology, Journal of Soviet Mathematics 37 (1987), 1090–1115.

    Article  MATH  Google Scholar 

  16. J. Kahn and V. Markovic, The good pants homology and the Ehrenpreis Conjecture, Ann. of Math. (2) 182 (2015), 1–72.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Kar, P. Kropholler and N. Nikolov, On growth of homology torsion in amenable groups, ArXiv e-prints (2015).

    Google Scholar 

  18. A. S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, Vol. 156, Springer-Verlag, New York, 1995.

    Book  Google Scholar 

  19. A. S. Kechris, Global aspects of ergodic group actions, Mathematical Surveys and Monographs, Vol. 160, American Mathematical Society, Providence, RI, 2010.

    Book  Google Scholar 

  20. A. S. Kechris, Weak containment in the space of actions of a free group, Israel J. Math. 189 (2012), 461–507.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Löh, 1-Homology and simplicial volume, PhD thesis, 2007, http://nbn-resolving.de/urn:nbn:de:hbz:6-37549578216.

    MATH  Google Scholar 

  22. C. Löh, Simplicial volume, Bull. Man. Atl. (2011), 7–18.

    Google Scholar 

  23. C. Löh and C. Pagliantini, Integral foliated simplicial volume of hyperbolic 3-manifolds, Groups, Geometry and Dynamics, to appear, ArXiv e-prints (2014).

    MATH  Google Scholar 

  24. A. Lubotzky and Y. Shalom, Finite representations in the unitary dual and Ramanujan groups, in Discrete geometric analysis, Contemp. Math., Vol. 347, Amer. Math. Soc., Providence, RI, 2004, pp. 173–189.

    Chapter  Google Scholar 

  25. W. Lück, Approximating L2-invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4 (1994), 455–481.

    Article  MathSciNet  MATH  Google Scholar 

  26. W. Lück, Approximating L2-invariants and homology growth, Geom. Funct. Anal. 23 (2013), 622–663.

    Article  MathSciNet  MATH  Google Scholar 

  27. W. Lück, L2-Invariants: theory and applications to geometry and K-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics[Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Vol. 44, Springer-Verlag, Berlin, 2002.

    Book  Google Scholar 

  28. F. Luo, Continuity of the volume of simplices in classical geometry, Commun. Contemp. Math. 8 (2006), 411–431.

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Petersen, Ergodic theory, Cambridge Studies in Advanced Mathematics, Vol. 2, Cambridge University Press, Cambridge, 1989, Corrected reprint of the 1983 original.

    Google Scholar 

  30. J. G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, Vol. 149, Springer-Verlag, New York, 1994.

    Book  Google Scholar 

  31. R. Sauer, Amenable covers,volume and L2-Betti numbers of aspherical manifolds, J. Reine Angew. Math. 636 (2009), 47–92.

    MathSciNet  MATH  Google Scholar 

  32. R. Sauer, Volume and homology growth of aspherical manifolds, Geom. Topol. 20 (2016), 1035–1059.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Schmidt, l2-Betti numbers of R-spaces and the integral foliated simplicial volume, PhD thesis, 2005, http://nbn-resolving.de/urn:nbn:de:hbz:6-05699458563.

    MATH  Google Scholar 

  34. W. Thurston, The geometry and topology of 3-manifolds, Mimeographed notes (1979).

    Google Scholar 

  35. R. D. Tucker-Drob, Weak equivalence and non-classifiability of measure preserving actions, Ergodic Theory Dynam. Systems 35 (2015), 293–336.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Frigerio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frigerio, R., Löh, C., Pagliantini, C. et al. Integral foliated simplicial volume of aspherical manifolds. Isr. J. Math. 216, 707–751 (2016). https://doi.org/10.1007/s11856-016-1425-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-016-1425-3

Navigation