Skip to main content
Log in

Growth of critical points in 1-dimensional lattice systems

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We study the growth of the number of critical points in 1-dimensional lattice systems by using (real) algebraic geometry and the theory of homoclinic tangency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Artin and B. Mazur, On periodic points, Ann. of Math. (2) 81 (1965), 82–99.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Asaoka, T. Fukaya, and M. Tsukamoto, Remark on dynamical Morse inequality, Proc. Japan Acad. Math. Sci. Ser. A 87 (2011), 178–182.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Bertelson, Topological invariants for discrete group actions, Lett. Math. Phys. 69 (2004), 147–156.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Bertelson and M. Gromov, Dynamical Morse entropy, in Modern Dynamical Systems and Applications, Cambridge Univ. Press, Cambridge, 2004, pp. 27–44.

    Google Scholar 

  5. J. Bochnak, M. Coste, and M-F. Roy, Real Algebraic Geometry, Springer-Verlag, Berlin, 1998.

    Book  MATH  Google Scholar 

  6. P. Duarte, Abundance of elliptic isles at conservative bifurcations, Dynam. Stability Systems 14 (1999), 339–356.

    Article  MATH  MathSciNet  Google Scholar 

  7. T. Fukaya and M. Tsukamoto, Asymptotic distribution of critical values, Geom. Dedicata 143 (2009), 63–67.

    Article  MATH  MathSciNet  Google Scholar 

  8. W. Fulton, Intersection Theory, Springer-Verlag, Berlin, 1984.

    Book  MATH  Google Scholar 

  9. S. Gonchenko, D. Turaev, and L. Shilnikov, Homoclinic tangencies of arbitrarily high orders in conservative and dissipative two-dimensional maps, Nonlinearity 20 (2007), 241–275.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York-Heidelberg, 1977.

    Book  MATH  Google Scholar 

  11. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. (2) 79 (1964), 109–326.

    Article  MATH  MathSciNet  Google Scholar 

  12. V. Y. Kaloshin, An extension of the Artin-Mazur theorem, Ann. of Math. (2) 150 (1999), 729–741.

    Article  MATH  MathSciNet  Google Scholar 

  13. V. Y. Kaloshin, Generic diffeomorphisms with superexponential growth of the number of periodic orbits, Comm. Math. Phys. 211 (2000), 253–271.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  15. H. King, Approximating submanifolds of real projective spaces by varieties, Topology 15 (1976), 81–85.

    Article  MATH  MathSciNet  Google Scholar 

  16. W. Kucharz, Transcendental submanifolds of projective space, Comment. Math. Helv. 84 (2009), 127–133.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Milnor, Morse Theory, Princeton University Press, Princeton, 1963.

    MATH  Google Scholar 

  18. J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964), 275–280.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1962 (1962), 1–20.

    MATH  Google Scholar 

  20. D. Mumford, The Red Book of Varieties and Schemes, second expanded edition, Springer-Verlag, Berlin, 1999.

    Book  MATH  Google Scholar 

  21. J. Nash, Real algebraic manifolds, Ann. of Math. (2) 56 (1952), 405–421.

    Article  MATH  MathSciNet  Google Scholar 

  22. C. Robinson, Dynamical Systems. Stability, Symbolic Dynamics, and Chaos, second edition, CRC Press, Boca Raton, FL, 1999.

    MATH  Google Scholar 

  23. A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa (3) 27 (1973), 167–185.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Asaoka.

Additional information

M. Asaoka was supported by Grant-in-Aid for Young Scientists (22684003) from JSPS.

T. Fukaya was supported by Grant-in-Aid for Young Scientists (23740049) from JSPS.

K. Mitsui was supported by Grant-in-Aid for JSPS Fellows (21-1111) from JSPS.

M. Tsukamoto was supported by Grant-in-Aid for Young Scientists (21740048) from JSPS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asaoka, M., Fukaya, T., Mitsui, K. et al. Growth of critical points in 1-dimensional lattice systems. JAMA 127, 47–68 (2015). https://doi.org/10.1007/s11854-015-0023-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-015-0023-3

Keywords

Navigation