Skip to main content

Advertisement

Log in

Phase Concentration Determination of Fe16N2 Using State of the Art Neutron Scattering Techniques

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Due to limitations on the availability of rare earth elements it is imperative that new high energy product rare earth free permanent magnet materials are developed for the next generation of energy systems. One promising low cost permanent magnet candidate for a high energy magnet is α″-Fe16N2, whose giant magnetic moment has been predicted to be well above any other from conventional first principles calculations. Despite its great promise, the α″ phase is metastable; making synthesis of the pure phase difficult, resulting in less than ideal magnetic characteristics. This instability gives way to a slew of possible secondary phases (i.e. α-Fe, Fe2O3, Fe8N, Fe4N, etc.) whose concentrations are difficult to detect by conventional x-ray diffraction. Here we show how high resolution neutron diffraction and polarized neutron reflectometry can be used to extract the phase concentration ratio of the giant magnetic phase from ultra-small powder sample sizes (~0.1 g) and thin films. These studies have led to the discovery of promising fabrication methods for both homogeneous thin films, and nanopowders containing the highest reported to date (>95%) phase concentrations of room temperature stable α″-Fe16N2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. L.H. Lewis and F. Jimenez-Villacorta, Metall. Mater. Trans. A 44, 2 (2012).

    Article  Google Scholar 

  2. V.G. Harris, Y. Chen, A. Yang, S. Yoon, Z. Chen, A.L. Geiler, J. Gao, C.N. Chinnasamy, L.H. Lewis, C. Vittoria, E.E. Carpenter, K.J. Carroll, R. Goswami, M.A. Willard, L. Kurihara, M. Gjoka, and O. Kalogirou: J. Phys. D: Appl. Phys. 43 (2010)

  3. B. Balasubramanian, B. Das, R. Skomski, W.Y. Zhang, and D.J. Sellmyer, Adv. Mater. 25, 6090 (2013).

    Article  Google Scholar 

  4. M. Zamanpour, S.P. Bennett, L. Majidi, Y. Chen, and V.G. Harris, J. Alloy. Compd. 625, 138 (2015).

    Article  Google Scholar 

  5. T.J. Nummy, S.P. Bennett, T. Cardinal, and D. Heiman, Appl. Phys. Lett. 99, 252506 (2011).

    Article  Google Scholar 

  6. F. Ronning and S. Bader, J. Phys.: Condens. Matter 26, 060301 (2014).

    Google Scholar 

  7. I. Khan and J. Hong, J. Phys. D Appl. Phys. 47, 415002 (2014).

    Article  Google Scholar 

  8. G.C. Hadjipanayis, J. Magn. Magn. Mater. 200, 373 (1999).

    Article  Google Scholar 

  9. J.M.D. Coey, Rare-Earth Iron Permanent Magnets, 1st ed. (Oxford: Clarendon Press, 1996).

    Google Scholar 

  10. M.J. Kramer, R.W. McCallum, I.A. Anderson, and S. Constantinides, JOM 64, 752 (2012).

    Article  Google Scholar 

  11. T.K. Kim and M. Takahashi, Appl. Phys. Lett. 20, 492 (1972).

    Article  Google Scholar 

  12. N.C. Koon, C.M. Williams, and B.N. Das, J. Appl. Phys. 52, 2535 (1981).

    Article  Google Scholar 

  13. K.J. Strnat, Proc. IEEE 78, 923 (1990).

    Article  Google Scholar 

  14. M. Sagawa, W. Yamagishi, and Z. Henmi, J. Appl. Phys. 52, 2520 (1981).

    Article  Google Scholar 

  15. N. Singh, V. Mudgil, K. Anand, A.K. Srivastava, R.K. Kotnala, and A. Dhar, J. Alloys Compd 633, 401 (2015).

    Article  Google Scholar 

  16. N. Bordeaux, A.M. Montes-Arango, J. Liu, K. Barmak, and L.H. Lewis, Acta Materiala 103, 608 (2016).

    Article  Google Scholar 

  17. M. Komuro, Y. Kozono, M. Hanazono, and Y. Sugita, J. Appl. Phys. 67, 5126 (1990).

    Article  Google Scholar 

  18. T.K. Kim and M. Takahashi, Appl. Phys. Lett. 20, 492 (1972).

    Article  Google Scholar 

  19. M. Widenmeyer, T.C. Hansen, R. Niewa, and Z. Anorg, Allg. Chem. 639, 2851 (2013).

    Article  Google Scholar 

  20. J.-P. Wang, N. Ji, X. Liu, Y. Xu, C. Sanchez-Hanke, Y. Wu, F.M.F. de Groot, L.F. Allard, and E. Lara-Curzio, IEEE Trans Mag. 48, 1710 (2012).

    Article  Google Scholar 

  21. M.-Z. Huang and W.Y. Ching, Phys. Rev. B. 51, 3222 (1995).

    Article  Google Scholar 

  22. H. Tanaka, H. Harima, T. Yamamoto, H. Katayama-Yoshida, Y. Nakata, and Y. Hirotsu, Phys. Rev. B 62, 15042 (2000).

    Article  Google Scholar 

  23. N. Ji, V. Lauter, C-J. Sun, L. F. Allard, H. Ambaye, S.M. Heald, E. Lara-Curzio, X. Liu, Y. Xu, X. Li, and J.-P. Wang, Direct Observation of Giant Saturation Magnetization in Fe 16 N 2 , cond-mat.mtrl-sci arXiv:1211.0553 (2012)

  24. N. Ji, V. Lauter, X. Zhang, H. Ambaye, and J.-P. Wang, Appl. Phys. Lett. 102, 072411 (2013).

    Article  Google Scholar 

  25. X. Zhang, N. Ji, V. Lauter, H. Ambaye, and J.-P. Wang, J. Appl. Phys. 113, 17E149 (2013).

    Google Scholar 

  26. N. Ji, M.S. Osofsky, V. Lauter, L.F. Allard, X. Li, K.L. Jensen, H. Ambaye, E. Lara-Curzio, and J.-P. Wang, Phys. Rev. B 84, 245310 (2011).

    Article  Google Scholar 

  27. N. Ji, V. Lauter, H. Ambaye, and J.-P. Wang, SPIN 2, 1250004 (2012).

    Article  Google Scholar 

  28. S. Okamoto, O. Kitakami, and Y. Shimida, J. Mag. Mag. Mat. 208, 102 (2000).

    Article  Google Scholar 

  29. M.A. Brewer, K.M. Krishnan, and C. Ortiz, J. Appl. Phys. 79, 5321 (1996).

    Article  Google Scholar 

  30. Y. Jiang, V. Dabade, M. Brady, O. Rios, R.D. James, and J.-P. Wang, J. Appl. Phys. 115, 17A1758 (2014).

    Google Scholar 

  31. Y. Jiang, M.A. Mehedi, E. Fu, Y. Wang, and J.-P. Wang, J. Appl. Phys. 115, 17A753 (2014).

    Article  Google Scholar 

  32. Y. Inokuti, N. Nishida, and N. Ohashi, Metallurg. Trans. A 6A, 773 (1975).

    Article  Google Scholar 

  33. Y. Jiang, X. Zhang, A.A. Mehedi, M. Yang, and J.-P. Wang, Mater. Res. Express 2, 116103 (2015).

    Article  Google Scholar 

  34. S.G. Sankar, S. Simizu, B.J. Zande, and R.T. Obermyer, Iron nitride powders for use in magnetic, electromagnetic, and microelectronic devices, U.S. Patent #US 20110059005 A1, March 10, 2011

  35. N. Neuefeind, M. Feygenson, J. Carruth, R. Hoffman, and K. Chipley, Nucl. Instrum. Methods Phys. Res. 287, 68 (2012).

    Article  Google Scholar 

  36. B.H. Toby, J. Appl. Crystallogr. 34, 210 (2001).

    Article  Google Scholar 

  37. J.A.C. Bland, D. Pescia, and R.F. Willis, Phys. Rev. Lett. 58, 1244 (1987).

    Article  Google Scholar 

  38. V. Lauter-Pasyuk, H.J. Lauter, B. Toperverg, O. Nikonov, E. Kravtsov, L. Romashev, and V. Ustinov, J. Magn. Mag. Mater. 226, 1694 (2001).

    Article  Google Scholar 

  39. V.V. Pasyuk, H.J. Lauter, M.T. Johnson, F.J.A. Denbroeder, E. Janssen, J.A.C. Bland, A.V. Petrenko, and J.M. Gay, J. Magn. Mag. Mater. 121, 180 (1993).

    Article  Google Scholar 

  40. V. Pasyuk, O.F.K. McGrath, H.J. Lauter, A. Petrenko, A. Lienard, and D. Givord, J. Magn. Mag. Mater. 148, 38 (1995).

    Article  Google Scholar 

  41. S.J. Blundell, M. Gester, J.A.C. Bland, H.J. Lauter, V.V. Pasyuk, and A.V. Petrenko, Phys. Rev. B 51, 9395 (1995).

    Article  Google Scholar 

  42. M.A.M. Gijs and F. Petroff, Magnetic Ultra Thin Films, Multilayers and Surfaces, 1st ed. (Amsterdam: Elsevier, 1997).

    Google Scholar 

  43. V. Lauter, H. Ambaye, R. Goyette, W.-T.H. Lee, and A. Parizzi, Phys. B 404, 2543 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific User Facilities Division, the Office of Basic Energy Sciences (BES), US Department of Energy (DOE), (S.P.B., V.L., M.F.). This work was supported in part by ARPA-E (Advanced Research Projects Agency. Energy) projects under Contract No. 0472-1595 and No. DE-AR0000645.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Bennett.

Additional information

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, S.P., Feygenson, M., Jiang, Y. et al. Phase Concentration Determination of Fe16N2 Using State of the Art Neutron Scattering Techniques. JOM 68, 1572–1576 (2016). https://doi.org/10.1007/s11837-016-1886-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1886-1

Keywords

Navigation