Skip to main content
Log in

A Semi-Empirical Model for Tilted-Gun Planar Magnetron Sputtering Accounting for Chimney Shadowing

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Integrated computational materials engineering (ICME) approaches to composition and thickness profiles of sputtered thin-film samples are the key to expediting materials exploration for these materials. Here, an ICME-based semi-empirical approach to modeling the thickness of thin-film samples deposited via magnetron sputtering is developed. Using Yamamura’s dimensionless differential angular sputtering yield and a measured deposition rate at a point in space for a single experimental condition, the model predicts the deposition profile from planar DC sputtering sources. The model includes corrections for off-center, tilted gun geometries as well as shadowing effects from gun chimneys used in most state-of-the-art sputtering systems. The modeling algorithm was validated by comparing its results with experimental deposition rates obtained from a sputtering system utilizing sources with a multi-piece chimney assembly that consists of a lower ground shield and a removable gas chimney. Simulations were performed for gun-tilts ranging from 0° to 31.3° from the vertical with and without the gas chimney installed. The results for the predicted and experimental angular dependence of the sputtering deposition rate were found to have an average magnitude of relative error of \( 4.14\% \pm 3.02\% \) for a 0°–31.3° gun-tilt range without the gas chimney, and \( 2.12\% \pm 1.71\% \) for a 17.7°–31.3° gun-tilt range with the gas chimney. The continuum nature of the model renders this approach reverse-optimizable, providing a rapid tool for assisting in the understanding of the synthesis-composition-property space of novel materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Brassard, S. Fourmaux, M. Jean-Jacques, J.C. Kieffer, and M.A. El Khakani, Appl. Phys. Lett. 87, 103106 (2005).

    Article  Google Scholar 

  2. M. Ogita, K. Higo, Y. Nakanishi, and Y. Hatanaka, Appl. Surf. Sci. 175, 721 (2001).

    Article  Google Scholar 

  3. J.A. Glasscock, R.F. Barnes, I.C. Plumb, and N. Savvides, J. Phys. Chem. C 111, 16477 (2007).

    Article  Google Scholar 

  4. J. Szczyrbowski, G. Brauer, G. Teschner, and A. Zmelty, J. Non-Cryst. Solids 218, 25 (1997).

    Article  Google Scholar 

  5. Y. Taki, Vacuum 74, 431 (2004).

    Article  Google Scholar 

  6. P.R. Vinod, H. Kakiuchi, T. Terai, A.N. Itakura, and M. Kitajima, Int. J. Mod. Phys. B 16, 1008 (2002).

    Article  Google Scholar 

  7. J. Hattrick-Simpers, D. Hunter, M. Craciunescu, K.S. Jang, M. Murakami, J. Cullen, M. Wuttig, I. Takeuchi, E. Lofland, L. Benderksy, N. Woo, B. Van Dover, T. Takahashi, and Y. Furuya, Appl. Phys. Lett. 93, 102507 (2008).

    Article  Google Scholar 

  8. N. Li and B.M. Lairson, IEEE Trans. Magn. 35, 1077 (1999).

    Article  Google Scholar 

  9. D. Liufu and K.C. Kao, J. Vac. Sci. Technol. A 16, 2360 (1998).

    Article  Google Scholar 

  10. D. Hunter, W. Osborn, K. Wang, N. Kazantseva, J. Hattrick-Simpers, R. Suchoski, R. Takahashi, M.L. Young, A. Mehta, L. Bendersky, S.E. Lofland, M. Wuttig, and I. Takeuchi, Nat. Commun. 2, 518 (2011).

    Article  Google Scholar 

  11. W.F. Maier, K. Stoewe, and S. Sieg, Angew. Chem. Int. Ed. 46, 6016 (2007).

    Article  Google Scholar 

  12. R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, and H. Lam, ACS Comb. Sci. 13, 579 (2011).

    Article  Google Scholar 

  13. C.J. Metting, J.K. Bunn, E. Underwood, S. Smoak, and J. Hattrick-Simpers, ACS Comb. Sci. 15, 419 (2013).

    Article  Google Scholar 

  14. J.F. Chang, H.H. Kuo, I. Leu, and M. Hon, Sens. Actuators B 84, 258 (2002).

    Article  Google Scholar 

  15. C. Corbella, A. Vives, A. Pinyol, E. Bertran, C. Canal, M.C. Polo, and J.L. Andujar, Surf. Coat. Technol. 177, 409 (2004).

    Article  Google Scholar 

  16. P. Sigmund, Thin Solid Films 520, 6031 (2012).

    Article  Google Scholar 

  17. C.H. Shon and J.K. Lee, Appl. Surf. Sci. 192, 258 (2002).

    Article  Google Scholar 

  18. P.-G. Fournier, A. Nourtier, V.I. Shulga, and M. El Fqih, Nucl. Instr. Methods Phys. Res. Sect. B 230, 577 (2005).

    Article  Google Scholar 

  19. K. Rodelsperger, W. Kruger, and A. Scharmann, Z. Physik A 272, 127 (1975).

    Article  Google Scholar 

  20. P. Sigmund, Phys. Rev. 184, 383 (1969).

    Article  Google Scholar 

  21. N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, and R. Shimizu, Radiat. Eff. Lett. 57, 15 (1980).

    Article  Google Scholar 

  22. Y. Yamamura, Radiat. Eff. Defects Solids 55, 49 (1981).

    Article  Google Scholar 

  23. X.Q. Meng, X.J. Fan, and H.X. Guo, Thin Solid Films 335, 279 (1998).

    Article  Google Scholar 

  24. J.M. Gregoire, M.B. Lobovsky, M.F. Heinz, F.J. DiSalvo, and R.B. van Dover, Phys. Rev. B 76, 195437 (2007).

    Article  Google Scholar 

  25. D. Depla and W. Leroy, Thin Solid Films 520, 6337 (2012).

    Article  Google Scholar 

  26. M.P. Seah, C.A. Clifford, F.M. Green, and I.S. Gilmore, Surf. Interface Anal. 37, 444 (2005).

    Article  Google Scholar 

  27. J.S. Liebig, P. Frach, H. Bartzsch, D. Schulze, and H. Schwanbeck, Surf. Coat. Technol. 97, 626 (1997).

    Article  Google Scholar 

  28. A. Gras-Marti and J.A. Valles-Abarca, J. Appl. Phys. 54, 1071 (1983).

    Article  Google Scholar 

  29. J.A. Valles-Abarca and A. Gras-Marti, J. Appl. Phys. 55, 1370 (1984).

    Article  Google Scholar 

  30. K. Meyer, I.K. Schuller, and C.M. Falco, J. Appl. Phys. 52, 5803 (1981).

    Article  Google Scholar 

  31. M. Thompson, Philos. Mag. 18, 377 (1968).

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the South Carolina SmartState Center of Economic Excellence for Strategic Approaches to the Generation of Electricity (SAGE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hattrick-Simpers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 17296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunn, J.K., Metting, C.J. & Hattrick-Simpers, J. A Semi-Empirical Model for Tilted-Gun Planar Magnetron Sputtering Accounting for Chimney Shadowing. JOM 67, 154–163 (2015). https://doi.org/10.1007/s11837-014-1234-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1234-2

Keywords

Navigation