Skip to main content
Log in

Error Assessment in Structural Transient Dynamics

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This paper presents in a unified framework the most representative state-of-the-art techniques on a posteriori error assessment for second order hyperbolic problems, i.e., structural transient dynamics. For the sake of presentation, the error estimates are grouped in four types: recovery-based estimates, the dual weighted residual method, the constitutive relation error method and error estimates for timeline-dependent quantities of interest. All these methodologies give a comprehensive overview on the available error assessment techniques in structural dynamics, both for energy-like and goal-oriented estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Babuska I, Rheinboldt WC (1978) Error estimates for adaptive finite element computations. SIAM J Numer Anal 18:736–754

    Article  MathSciNet  Google Scholar 

  2. Ladevèze P, Leguillon D (1983) Error estimate procedure in the finite element method. SIAM J Numer Anal 20:485–509

    Article  MATH  MathSciNet  Google Scholar 

  3. Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptative procedure for practical engineering analysis. Int J Numer Methods Eng 24:337–357

    Article  MATH  MathSciNet  Google Scholar 

  4. Paraschivoiu M, Peraire J, Patera AT (1997) A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations. Comput Methods Appl Mech Eng 150:289–321

    Article  MATH  MathSciNet  Google Scholar 

  5. Parés N, Bonet J, Huerta A, Peraire J (2006) The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasicity equations. Comput Methods Appl Mech Eng 195:406–429

    Article  MATH  Google Scholar 

  6. Cirak F, Ramm E (1998) A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem. Comput Methods Appl Mech Eng 156:351–362

    Article  MATH  MathSciNet  Google Scholar 

  7. Prudhomme S, Oden JT (1999) On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comput Methods Appl Mech Eng 176:313–331

    Article  MATH  MathSciNet  Google Scholar 

  8. Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley, New York

    Book  MATH  Google Scholar 

  9. Ladevèze P, Pelle JP (2001) La maîtrise du calcul en mécanique linéaire et non linéaire. Lavoisier, New York

    MATH  Google Scholar 

  10. Stein E (2003) Error-controlled adaptive finite elements in solid mechanics. Wiley, New York

    Google Scholar 

  11. Ainsworth M, Oden JT (1997) A posteriori error estimation in finite element analysis. Comput Methods Appl Mech Eng 142:1–88

    Article  MATH  MathSciNet  Google Scholar 

  12. Gratsch T, Bathe KJ (2005) A posteriori error estimation techniques in practical finite element analysis. Comput Struct 83:235–265

    Article  MathSciNet  Google Scholar 

  13. Díez P, Parés N, Huerta A (2010) Encyclopedia of aerospace engineering, chapter error estimation and quality control. Wiley, New York

    Google Scholar 

  14. Rannacher R (2001) Adaptive Galerkin finite element methods for partil differential equations. J Comput Appl Math 128:205–233

    Article  MATH  MathSciNet  Google Scholar 

  15. Gallimard L, Ladeveze P, Pelle JP (2000) An enhanced error estimator on the constitutive relation for plasticity problems. Comput Struct 78:801–810

    Article  MathSciNet  Google Scholar 

  16. Ladevèze P (2001) Constitutive relation errors for fe analysis considering (visco-)plasticity and damage. Int J Numer Meth Eng 52:527–542

    Article  MATH  Google Scholar 

  17. Ladevèze P, Moës N (1999) Adaptive control for finite element analysis in plasticity. Comput Struct 73:45–60

    Article  MATH  Google Scholar 

  18. Ladevèze P, Moës N, Douchin B (2000) Constitutive relation error estimators for (visco)plastic finite element analysis with softening. Comput Methods Appl Mech Eng 176:247–264

    Article  Google Scholar 

  19. Parés N, Díez P, Huerta A (2009) Exact bounds of the advection–diffusion–reaction equation using flux-free error estimates. SIAM J Sci Comput 31:3064–3089

    Article  MATH  MathSciNet  Google Scholar 

  20. Larsson F, Díez P, Huerta A (2010) A flux-free a posteriori error estimator for the incompressible Stokes problem using a mixed FE formulation. Comput Methods Appl Mech Eng 199:2383–2402

    Article  MATH  Google Scholar 

  21. Parés N, Díez P, Huerta A (2008) Bounds of functional outputs for parabolic problems. Part I: exact bounds of the discontinuous galerkin time discretization. Comput Methods Appl Mech Eng 197:1641–1660

    Article  MATH  Google Scholar 

  22. Parés N, Díez P, Huerta A (2008) Bounds of functional outputs for parabolic problems. Part II: bounds of the exact solution. Comput Methods Appl Mech Eng 197:1661–1679

    Article  MATH  Google Scholar 

  23. Díez P, Calderón G (2007) Goal-oriented error estimation for transient parabolic problems. Comput Mech 39:631–646

    Article  MATH  MathSciNet  Google Scholar 

  24. Larson MG, Bengzon F (2008) Adaptive finite element approximation of multiphysics problems. Commun Numer Methods Eng 24:505–521

    Article  MATH  MathSciNet  Google Scholar 

  25. Larson MG, Soderlund R, Bengzon F (2008) Adaptive finite element approximation of coupled flow and transport problems with applications in heat transfer. Int J Numer Methods Fluids 57:1397–1420

    Article  MATH  MathSciNet  Google Scholar 

  26. Fick PW, van Brummelen EH, van der Zee KG (2010) On the adjoint-consistent formulation of interface conditions in goal-oriented error estimation and adaptivity for fluid-structure interaction. Comput Methods Appl Mech Eng 199:3369–3385

    Article  MATH  Google Scholar 

  27. van der Zee KG, van Brummelen EH, Akkerman I, de Borst R (2011) Goal-oriented error estimation and adaptivity for fluid-structure interaction using exact linearized adjoints. Comput Methods Appl Mech Eng 200:2738–2757

    Article  MATH  Google Scholar 

  28. Asner L, Tavener S, Kay D (2012) Adjoint-based a posteriori error estimation for coupled time-dependent systems. SIAM J Sci Comput 34:2394–2419

    Article  MathSciNet  Google Scholar 

  29. Li XD, Wiberg NE (1998) Implementation and adaptivity of a space–time finite element method for structural dynamics. Comput Methods Appl Mech Eng 156:211–229

    Article  MATH  MathSciNet  Google Scholar 

  30. Wiberg NE, Li XD (1999) Adaptive finite element procedures for linear and non-linear dynamics. Int J Numer Methods Eng 46:178–1802

    Article  Google Scholar 

  31. Schleupen A, Ramm E (2000) Local and global error estimations in linear structural dynamics. Comput Struct 76:741–756

    Article  MathSciNet  Google Scholar 

  32. Thompson LL, He D (2005) Adaptive space–time finite element methods for the wave equation on unbounded domains. Comput Methods Appl Mech Eng 194:1947–2000

    Article  MATH  MathSciNet  Google Scholar 

  33. Lahiri S, Bonet J, Peraire J (2010) A variationally consistent mesh adaptation method for triangular elements in explicit lagrangian dynamics. Int J Numer Methods Eng 82:1073–1113

    Article  MATH  MathSciNet  Google Scholar 

  34. Aubry D, Lucas D, Tie B (1999) Adaptive strategy for transient/coupled problems. Applications to thermoelasticity and elastodynamics. Comput Methods Appl Mech Eng 176:41–50

    Article  MATH  MathSciNet  Google Scholar 

  35. Bangerth W, Geiger M, Rannacher R (2010) Adaptive Galerkin finite element methods for the wave equation. Comput Methods Appl Math 1:3–48

    MathSciNet  Google Scholar 

  36. Bangerth W (1998) Adaptive Finite-Elemente-Methoden zur Lösung der Wellengleichung mit Anwendung in der Phisik der Sonne. PhD thesis, Ruprecht-Karls-Universität Heidelberg

  37. Bangerth W, Rannacher R (1999) Finite element approximation of the acoustic wave equation: error control and mesh adaptation. East-West J Numer Math 7:263–282

    MATH  MathSciNet  Google Scholar 

  38. Bangerth W, Rannacher R (2001) Adaptive finite element techniques for the acoustic wave equation. J Comput Acoust 9:575–591

    Article  MathSciNet  Google Scholar 

  39. Combe JP, Ladevèze P, Pelle JP (2002) Discretization error estimator for transcient dynamic simulations. Adv Eng Softw 33:553–563

    Article  MATH  Google Scholar 

  40. Combe JP, Ladevèze P, Pelle JP (1999) Constitutive relation error estimator for transient finite element analysis. Comput Methods Appl Mech Eng 176:165–185

    Article  MATH  Google Scholar 

  41. Ladevèze P, Pelle JP (2003) Estimation of discretization errors in dynamics. Comput Struct 81:1133–1148

    Article  Google Scholar 

  42. Ladevèze P, Waeytens J (2009) Model verification in dynamics trough strict upper bounds. Comput Methods Appl Mech Eng 198:1775–1784

    Article  MATH  Google Scholar 

  43. Waeytens J (2010) Contrôle des calculs en dynamique: bornes strictes et pertinents sur une quantié d’intérêt. PhD thesis, LMT-Cachan

  44. Ladevèze P (2008) Strict upper error bounds for computed outputs of interest in computational structural mechanics. Comput Mech 42:271–286

    Article  MATH  Google Scholar 

  45. Waeytens J, Chamoin L, Ladevèze P (2012) Guaranteed error bounds on pointwise quantities of interest for transient viscodynamics problems. Comput Mech 49:291–307

    Article  MATH  MathSciNet  Google Scholar 

  46. Verdugo F, Díez P (2012) Computable bounds of functional outputs in linear visco-elastodynamics. Comput Methods Appl Mech Eng 245–246:313–330

    Article  Google Scholar 

  47. Fuentes D, Littlefield D, Oden JT, Prudhomme S (2006) Extensions of goal-oriented error estimation methods to simulation of highly-nonlinear response of shock-loaded elastomer-reinforcedstructures. Comput Methods Appl Mech Eng 195:4659–4680

    Article  MATH  MathSciNet  Google Scholar 

  48. Evans LC (1998) Partial Differential Equations. American Mathematical Society, Providence

    MATH  Google Scholar 

  49. Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech 85:67–94

    Google Scholar 

  50. Eriksson K, Estep D, Hansbo P, Johnson C (1996) Computational differential equations. Studentlitteratur, Lund

    MATH  Google Scholar 

  51. Hughes TJR, Hulbert GM (1988) Space–time finite element methods for elastodynamics: formulations and error estimates. Comput Methods Appl Mech Eng 66:339–363

    Article  MATH  MathSciNet  Google Scholar 

  52. Hulbert GM, Hughes TJR (1990) Space–time finite element methods for second-order hypeerbolic equations. Comput Methods Appl Mech Eng 84:327–348

    Article  MATH  MathSciNet  Google Scholar 

  53. Johnson C (1993) Discontinuous galerkin finite element methods for second order hyperbolic problems. Comput Methods Appl Mech Eng 107:117–129

    Article  MATH  Google Scholar 

  54. Johnson C (1990) Numerical solution of partial differential equations by the finite element method. Cambridge University Press, Cambridge

    Google Scholar 

  55. Díez P, Calderón G (2007) Remeshing criteria and proper error representations for goal oriented h-adaptivity. Comput Methods Appl Mech Eng 196:719–733

    Article  MATH  Google Scholar 

  56. Zienkiewicz OC, Xie YM (1991) A simple error estimator and adaptive time stepping procedure for dynamic analysis. Earthq Eng Struct Dyn 20:871–887

    Article  Google Scholar 

  57. Li XD, Zeng LF, Wiberg NE (1993) A simple error estimator and adaptive time stepping procedure for dynamic analysis. Commun Numer Methods Eng 9:273–292

    Google Scholar 

  58. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int J Numer Methods Eng 33:1331–1364

    Article  MATH  MathSciNet  Google Scholar 

  59. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 2: error estimates and adaptivity. Int J Numer Methods Eng 33:1365–1382

    Google Scholar 

  60. Wiberg NE, Li XD (1994) Superconvergent patch recovery of finite-element solution and a posteriori L\(_2\) norm error estimate. Commun Numer Methods Eng 10:313–320

    Google Scholar 

  61. Li XD, Wiberg NE (1994) A posteriori error estimate by element patch post-processing, adaptive analysis in energy and L\(_2\) norms. Comput Struct 53:907–919

    Article  MATH  MathSciNet  Google Scholar 

  62. Wiberg NE, Bausys R, Hager P (1999) Adaptive h-version eigenfrequency analysis. Comput Struct 71:565–584

    Article  Google Scholar 

  63. Rannacher R, Stuttmeier FT (1997) A feed-back approach to error control in finite element methods: application to linear elasticity. Comput Mech 19:434–446

    Article  MATH  MathSciNet  Google Scholar 

  64. Bangerth W, Rannacher R (2003) Adaptive finite element methods for differential equations. Birkhäuser, Berlin

    Book  MATH  Google Scholar 

  65. Oden JT, Prudhomme S (2001) Goal-oriented error estimation and adaptivity for the finite element method. Comput Math Appl 41:735–765

    Article  MATH  MathSciNet  Google Scholar 

  66. Parés N, Díez P, Huerta A (2006) A subdomain-based flux-free a posteriori error estimators. Comput Methods Appl Mech Eng 195:297–323

    Article  MATH  Google Scholar 

  67. Moitinho de Almeida JP, Almeida Pereira OJB (2006) Upper bounds of the error in local quantities using equilibrated and compatible finite element solutions for linear elastic problems. Comput Methods Appl Mech Eng 195:279–296

    Article  MATH  MathSciNet  Google Scholar 

  68. Almeida Pereira OJB, Moitinho de Almeida JP (2010) Dual adaptive finite element refinement for multiple local quantities in linear elastostatics. Int J Numer Methods Eng 83:347–365

    MATH  MathSciNet  Google Scholar 

  69. Pled F, Chamoin L, Ladevèze P (2011) On the techniques for constructing admissible stress fields in model verification: performances on engineering examples. Int J Numer Methods Eng 88:409–441

    Article  MATH  Google Scholar 

  70. Cottereau R, Díez P, Huerta A (2009) Strict error bounds for linear solid mechanics problems using a subdomain-based flux-free method. Comput Mech 44:533–547

    Article  MATH  MathSciNet  Google Scholar 

  71. Verdugo F, Parés N, Díez P (2013) Modal based goal-oriented error assessment for timeline-dependent quantities in transient dynamics. Int J Numer Methods Eng 96:483–509

    Google Scholar 

  72. Rafique A, Kapre N, Constantinides GA January (2012) A high throughput FPGA-based implementation of the lanczos method for the symmetric extremal eigenvalue problem. In: 8th international symposium on applied reconfigurable computing

  73. Bathe KJ (1996) Finite element procedures. Prentice Hall, New York

    Google Scholar 

  74. Trefethen LN, Bau D (1997) Numerical linear algebra. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

Download references

Acknowledgments

Partially supported by Ministerio de Educación y Ciencia, Grant DPI2011-27778-C02-02 and Universitat Politècnica de Catalunya (UPC-BarcelonaTech), grant UPC-FPU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Verdugo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verdugo, F., Parés, N. & Díez, P. Error Assessment in Structural Transient Dynamics. Arch Computat Methods Eng 21, 59–90 (2014). https://doi.org/10.1007/s11831-014-9096-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-014-9096-x

Keywords

Navigation