Skip to main content
Log in

Vapor-liquid equilibrium of ethanol/ethyl acetate mixture in ultrasonic intensified environment

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A vapor-liquid equilibrium (VLE) study was conducted on ethanol/ethylacetate mixture as a preliminary step towards developing an ultrasonic-assisted distillation process for separating azeotropic mixtures. The influence of ultrasonic intensity and frequency on the vapor-liquid equilibrium (VLE) of the mixture was examined using a combination of four ultrasonic intensities in range of 100–400W/cm2 and three frequencies ranging from 25–68 kHz. The sonication was found to have significant impacts on the VLE of the system as it alters both the relative volatility and azeotrope point, with preference to lower frequency operation. A maximum relative volatility of 2.32 was obtained at an intensity of 300 W/cm2 and a frequency of 25 kHz coupled with complete elimination of ethanol-ethyl acetate azeotrope. Results from this work were also congruent with some experimental and theoretical works presented in the literature. These findings set a good beginning towards the development of an ultrasonic assisted distillation that is currently in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. I. Kroschwitz and M. Howe-Grant, Kirk-Othmer concise encyclopedia of chemical technology, Wiley (1999).

    Google Scholar 

  2. S. Xu and H. Wang, Chemical Engineering Research Design, 84, 478 (2006).

    Article  CAS  Google Scholar 

  3. C. Stéger, E. Rév, L. Horváth, Z. Fonyó, M. Meyer and Z. Lelkes, Sep. Purif. Technol., 52, 343 (2006).

    Article  CAS  Google Scholar 

  4. I. n. D. Gil, D. C. Botía, P. Ortiz and O. F. Sánchez, Ind. Eng. Chem. Res., 48, 4858 (2009).

    Article  CAS  Google Scholar 

  5. X. Yang, X. Yin and P. Ouyang, Chinese J. Chem. Eng., 17, 27 (2009).

    Article  CAS  Google Scholar 

  6. M. Ravagnani, M. Reis and M. Wolf-Maciel, Process Safety Environ. Protection, 88, 67 (2010).

    Article  CAS  Google Scholar 

  7. L. Silva, S. Mattedi, R. Gonzalez-Olmos and M. Iglesias, J. Chem. Thermodyn., 38, 1725 (2006).

    Article  CAS  Google Scholar 

  8. P. Lang and G. Modla, Chem. Eng. Sci., 61, 4262 (2006).

    Article  CAS  Google Scholar 

  9. B. P. Guedes, M. F. Feitosa, L. S. Vasconcelos, A. B. Araújo and R. P. Brito, Sep. Purif. Technol., 56, 270 (2007).

    Article  CAS  Google Scholar 

  10. R. Andrea Ruiz, B. Nelson Borda, L. R. Alexander, R. Javier, L. Guevara, D. Ivan, C. Gil, in: M. C. G. E. N. Pistikopoulos, A. C. Kokossis (Eds.), Computer aided chemical engineering, Elsevier, 833 (2011).

  11. R. Munoz, J. Monton, M. Burguet and J. de la Torre, Sep. Purif. Technol., 50, 175 (2006).

    Article  CAS  Google Scholar 

  12. J.-U. Repke, A. Klein, D. Bogle and G. Wozny, Chemical Engineering Research Design, 85, 492 (2007).

    Article  CAS  Google Scholar 

  13. G. Modla, Comput. Chem. Eng., 34, 1640 (2010).

    Article  CAS  Google Scholar 

  14. J. Lee, J. Cho, D. M. Kim and S. Park, Korean J. Chem. Eng., 28, 591 (2011).

    Article  CAS  Google Scholar 

  15. J.-Y. Yao, S.-Y. Lin and I. Chien, J. Chinese Inst. Chem. Eng., 38, 371 (2007).

    Article  CAS  Google Scholar 

  16. C. J. Calzon-McConville, M. B. Rosales-Zamora, J.G. Segovia-Hernandez, S. Hernandez and V. Rico-Ramírez, Ind. Eng. Chem. Res., 45, 724 (2006).

    Article  CAS  Google Scholar 

  17. I. Dejanovi, L. Matijaševiæ, Ž. Oluji, Chem. Eng. Process.: Process Intensification, 49, 559 (2010).

    Article  CAS  Google Scholar 

  18. J. Harmsen, Chem. Eng. Process.: Process Intensification, 49, 70 (2010).

    Article  CAS  Google Scholar 

  19. V. N. Maleta, A.A. Kiss, V. Taran and B.V. Maleta, Chem. Eng. Process.: Process Intensification, 50, 655 (2011).

    Article  CAS  Google Scholar 

  20. A. A. Kiss and D. J. Suszwalak, Sep. Purif. Technol., 86, 70 (2012).

    Article  CAS  Google Scholar 

  21. R. Isopescu, A. Woinaroschy and L. Draghiciu, Revista de Chimie, 59, 812 (2008).

    CAS  Google Scholar 

  22. H. Fairbanks, Powder Technol., 40, 257 (1984).

    Article  Google Scholar 

  23. D. Zhou, D. Liu, X. Hu and C. Ma, Exp. Therm. Fluid Sci., 26, 931 (2002).

    Article  CAS  Google Scholar 

  24. S. Hemwimol, P. Pavasant and A. Shotipruk, Ultrasonics Sonochemistry, 13, 543 (2006).

    Article  CAS  Google Scholar 

  25. S. Rodrigues and G. A. Pinto, J. Food Eng., 80, 869 (2007).

    Article  CAS  Google Scholar 

  26. C. Zhu and G. Liu, J. Membr. Sci., 176, 31 (2000).

    Article  CAS  Google Scholar 

  27. A. Bono, R. Sarbatly, D. Krishnaiah, P.M. San and F.Y. Yan, Catal. Today, 131, 472 (2008).

    Article  CAS  Google Scholar 

  28. A. Ripin, S. K. Abdul Mudalip and R. Mohd Yunus, Jurnal Teknologi, 48, 61 (2008).

    Article  Google Scholar 

  29. A. Ripin, S. K. Abdul Mudalip, Z. Sukaimi, R. M. Yunus and Z. A. Manan, Sep. Sci. Technol., 44, 2707 (2009).

    Article  CAS  Google Scholar 

  30. S.K. Abdul Mudalip, A. Ripin, R. Mohd Yunus, S. Z. Sulaiman and R. Che Man, International Journal on Advanced Science, Engineering and Information Technology, 1, 72 (2011).

    Google Scholar 

  31. F. P. Capote and M. L. de Castro, Analytical applications of ultrasound, Access Online via Elsevier (2007).

    Google Scholar 

  32. G. Cravotto and P. Cintas, Chemical Society Reviews, 35, 180 (2006).

    Article  CAS  Google Scholar 

  33. M. Topphoff, J. Kiepe and J. Gmehling, J. Chem. Eng. Data 46, 1333 (2001)

    Google Scholar 

  34. T. J. Mason and J. Phillip, Applied sonochemistry, Wiley-VCH Weinheim (2002).

    Book  Google Scholar 

  35. M. Luque de Castro and F. Priego-Capote, Talanta, 72, 321 (2007).

    Article  CAS  Google Scholar 

  36. S. L. Peshkovsky and A. S. Peshkovsky, Ultrasonics Sonochemistry, 14, 314 (2007).

    Article  CAS  Google Scholar 

  37. Z. Wu and B. Ondruschka, J. Phys. Chem. A, 109, 6521 (2005).

    Article  CAS  Google Scholar 

  38. D. Chen, S. K. Sharma and A. Mudhoo, Handbook on Applications of Ultrasound: Sonochemistry for sustainability, CRC Press (2012).

    Google Scholar 

  39. S. Sochard, A.-M. Wilhelm and H. Delmas, Chem. Eng. Sci., 53, 239 (1998).

    Article  CAS  Google Scholar 

  40. K. S. Suslick, D. A. Hammerton and R. E. Cline, J. American Chem. Soc., 108, 5641 (1986).

    Article  CAS  Google Scholar 

  41. H. Skolnik, Ind. Eng. Chem., 43, 172 (1951).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshad Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahdi, T., Ahmad, A., Ripin, A. et al. Vapor-liquid equilibrium of ethanol/ethyl acetate mixture in ultrasonic intensified environment. Korean J. Chem. Eng. 31, 875–880 (2014). https://doi.org/10.1007/s11814-014-0011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0011-9

Keywords

Navigation