Skip to main content
Log in

Size-controlled electrochemical synthesis of palladium nanoparticles using morpholinium ionic liquid

  • Materials (Organic, Inorganic, Electronic, Thin Films), Polymer, Fluidization, Particle Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We have successfully synthesized morpholinium ionic liquid-stabilized palladium (Pd) nanoparticles by electrochemical reduction. For characterization of Pd nanoparticles, FT-IR, UV-visible spectroscopy, and Transmission electron microscopy (TEM) were employed. The FT-IR spectrum of Pd nanoparticles indicated the surface binding of the IL to the nanoparticles. The UV-visible spectrum showed that nano-sized Pd particles were produced. The particle size was controlled by the adjustment of the current density, temperature, and electrolysis duration. The TEM images showed an average size of 2.0, 2.2, 2.4, 2.9, 3.5, 3.9, and 4.5 nm. Nearly a 0.5 nm-sized control of the nanoparticle was achieved. The particle size increased with a decrease in the current density and an increase in temperature and electrolysis duration. The electron diffraction patterns of resulting nanoparticles indicated that the particles had a crystalline structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Cao, in Nanostructures and nanomaterials, ICP, London, (2004). b) C. N. R. Rao, A. Müller and A. K. Cheetham, in The chemisty of nanomaterials, WILEY-VCH, Weinheim (2004).

    Google Scholar 

  2. M. T. Reetz and W. Helbig, J. Am. Chem. Soc., 116, 7401 (1994).

    Article  CAS  Google Scholar 

  3. M. T. Reetz, M. Winter, R. Breinbauer, T. Thum-Albrecht and W. Vogel, Chem. Eur. J., 7, 1084 (2001).

    Article  CAS  Google Scholar 

  4. The electrochemical window of tetrabutylammonium bromide ranged from −2.0 to 0.5 V vs. Ag/Ag+.

  5. K.-S. Kim, S. Choi, D. Demberelnyamba, H. Lee, J. Oh, B.-B. Lee and S.-J. Mun, Chem. Commun., 828 (2004). b) K.-S. Kim, S.-Y. Park, S.-H. Yeon and H. Lee, Electrochimica Acta, 50, 5673 (2005). c) S.-H. Yeon, K.-S. Kim, S. Choi, H. Lee, H. S. Kim and H. Kim, Electrochimica Acta, 50, 5399 (2005). d) S.-H. Yeon, K.-S. Kim, S. Choi, J.-H Cha and H. Lee, J. Phys. Chem B, 109, 17928 (2005). e) K.-S. Kim, B.-K. Shin, H. Lee and F. Ziegler, Fluid Phase Equilibia, 218, 215 (2004). f) T. Welton, Chem. Rev., 99, 2071 (1999). g) K. N. Marsh, A. Deev, ACT Wu, E. Tran and A. Klamt, Korean J. Chem. Eng., 19, 357 (2002). h) Y. Tsukada, K. Iwamoto, H. Furutani, Y. Matsushita, Y. Abe, K. Matsumoto, K. Monda, S. Hayase, M. Kawatsura and T. Itoh, Tetrahedron Lett., 47, 1801 (2006). i) K.-S. Kim, S.-Y. Park, S. Choi and H. Lee, J. Power Sources, 155, 385 (2006). j) S. Choi, K.-S. Kim, H. Lee, J. S. Oh and B. B. Lee, Korean J. Chem. Eng., 22, 281 (2005). k) J.-H. Cha, K.-S. Kim, S. Choi, S.-H. Yeon, H. Lee, H. S. Kim and H. Kim, Korean J. Chem. Eng., 22, 945 (2005). l) K.-S. Kim, D. Demberelnyamba, B.-K. Shin, S.-H. Yeon, S. Choi, J.-H. Cha, H. Lee, C.-S. Lee and J.-J. Shim, Korean J. Chem. Eng., 23, 113 (2006).

  6. K. R. Seddon, A. Stark and M.-J. Torres, Pure Appl. Chem., 72, 2275 (2000).

    Article  CAS  Google Scholar 

  7. J. Dupont, G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner and S. R. Teixeira, J. Am. Chem. Soc., 124, 4228 (2002). b) J. Huang, T. Jiang, B. Han, H. Gao, Y. Chang, G. Zhao and W. Wu, Chem. Commun., 1654 (2003). e) Y.-J. Zhu, W.-W. Wang, R.-J. Qi and X.-L. Hu, Angew. Chem. Int. Ed., 43, 1410 (2004). f) K.-S. Kim, S. Choi, J.-H. Cha, S.-H. Yeon and H. Lee, J. Mater. Chem., 16, 1315 (2006).

    Article  CAS  Google Scholar 

  8. K.-S. Kim, D. Demberelnyamba and H. Lee, Langmuir, 20, 556 (2004). b) K.-S. Kim, D. Demberelnyamba, S.-H. Yeon, S. Choi, J.-H Cha and H. Lee, Korean J. Chem. Eng., 22, 717 (2005).

    Article  CAS  Google Scholar 

  9. H. Bönnemann and R. M. Richards, Eur. J. Inorg. Chem., 2455 (2001).

  10. The electrochemical window of [Mor1,4][BF4] ranged from −2.6 to 3.8 V vs. Ag/Ag+.

  11. J. A. Creighton and D. S. Eadon, J. Chem. Soc. Faraday Trans., 87, 3881 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huen Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cha, JH., Kim, KS., Choi, S. et al. Size-controlled electrochemical synthesis of palladium nanoparticles using morpholinium ionic liquid. Korean J. Chem. Eng. 24, 1089–1094 (2007). https://doi.org/10.1007/s11814-007-0126-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-007-0126-3

Key words

Navigation