Skip to main content
Log in

Fatty acid synthase inhibitors from plants and their potential application in the prevention of metabolic syndrome

  • Published:
Clinical Oncology and Cancer Research

Abstract

Fatty acid synthase (FAS) a racts more and more attention recently as a potential target for metabolic syndrome, such as cancer, obesity, diabetes and cerebrovascular disease. FAS inhibitors are widely existed in plants, consisting of diversiform compounds. These inhibitors exist not only in herbs also in many plant foods, such as teas, allium vegetables and some fruits. These effective components include gallated catechins, theaflavins, flavonoids, condensed and hydrolysable tannins, thioethers, pentacyclic triterpenes, stilbene derivatives, etc, and they target at the different domains of FAS, showing different inhibitory mechanisms. Interestingly, these FAS inhibitor-contained herbs and plant foods and their effective components are commonly related to the prevention of metabolic syndromes including fatreducing and depression of cancer. From biochemical angle, FAS can control the balance between energy provision and fat production. Some studies have shown that the effects of those effective components in plants on metabolic syndromes are mediated by inhibiting FAS. This suggests that FAS plays a critical role in the regulation of energy metabolism, and the FAS inhibitors from plants have significant potential application value in the treatment and prevention of metabolic syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goran MI, Ball GD, Cruz ML. Obesity and risk of type 2 diabetes and cardiovascular disease in children and adolescents. J Clin Endocrinol Metab 2003; 88: 1417–1427.

    Article  PubMed  CAS  Google Scholar 

  2. Calle EE, Rodriguez C, Walker-Thurmond K, et al. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 2003; 348: 1625–1638.

    Article  PubMed  Google Scholar 

  3. Wakil SJ: Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 1989; 28: 4523–4530.

    Article  PubMed  CAS  Google Scholar 

  4. Maier T, Leibundgut M, Ban N. The crystal structure of a mammalian fatty acid synthase. Science 2008; 321: 1315–1322.

    Article  PubMed  CAS  Google Scholar 

  5. Loftus TM, Jaworsky DE, Frehywot GL, et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 2000; 288: 2379–2381.

    Article  PubMed  CAS  Google Scholar 

  6. Li M, Shi Y, Tian W. Factors influencing the levels of fatty acid synthase complex activity in fowl. Biochem Mol Biol Int 1999; 47: 63–69.

    PubMed  CAS  Google Scholar 

  7. Flier JS. The adipocyte: storage depot or node on the energy information superhighway? Cell 1995; 80: 15–18.

    Article  PubMed  CAS  Google Scholar 

  8. Rosen ED. Molecular mechanisms of adipocyte differentiation. Ann Endocrinol (Paris) 2002; 63: 79–82.

    CAS  Google Scholar 

  9. Schmid B, Rippmann JF, Tadayyon M, et al. Inhibition of fatty acid synthase prevents preadipocyte differentiation. Biochem Biophys Res Commun 2005; 328: 1073–1082.

    Article  PubMed  CAS  Google Scholar 

  10. Kuhajda FP. Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 2000; 16: 202–208.

    Article  PubMed  CAS  Google Scholar 

  11. Vance D, Goldberg I, Mitsuhashi O, et al. Inhibition of fatty acid synthetases by the antibiotic cerulenin. Biochem Biophys Res Commun 1972; 48: 649–656.

    Article  PubMed  CAS  Google Scholar 

  12. Kuhajda FP, Pizer ES, Li JN, et al. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc Natl Acad Sci USA 2000; 97: 3450–3454.

    Article  PubMed  CAS  Google Scholar 

  13. Wang X, Tian W. Green tea epigallocatechin gallate: a natural inhibitor of fatty-acid synthase. Biochem Biophys Res Commun 2001; 288: 1200–1206.

    Article  PubMed  CAS  Google Scholar 

  14. Kao YH, Hiipakka RA, Liao S. Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 2000; 141: 980–987.

    Article  PubMed  CAS  Google Scholar 

  15. Wang X, Song KS, Guo QX, et al. The galloyl moiety of green tea catechins is the critical structural feature to inhibit fatty-acid synthase. Biochem Pharmacol 2003; 66: 2039–2047.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang R, Xiao W, Tian W. Inhibitory effect of green tea extract on fatty acid synthase. Journal of Yunnan University (natural sciences) 2004; 26: 42–47 (Chinese).

    Google Scholar 

  17. Zhang R, Xiao W, Wang X, et al: Novel inhibitors of fatty-acid synthase from green tea (Camellia sinensis Xihu Longjing) with high activity and a new reacting site. Biotechnol Appl Biochem 2006; 43: 1–7.

    Article  PubMed  Google Scholar 

  18. Du YT, Wang X, Wu XD, et al. Keemun black tea extract contains potent fatty acid synthase inhibitors and reduces food intake and body weight of rats via oral administration. J Enzyme Inhib Med Chem 2005; 20: 349–356.

    Article  PubMed  CAS  Google Scholar 

  19. Jiang B, Tian W, WU X. Inhibitory effect of Sichuan Bian Tea on fatty acid synthase. Journal of Graduate University of Chinese Academy of Sciences 2007; 24: 291–299 (Chinese).

    Google Scholar 

  20. Wang Y, Zhang SY, Ma XF, et al. Potent inhibition of fatty acid synthase by parasitic loranthus [Taxillus chinensis (dc.) danser] and its constituent avicularin. J Enzyme Inhib Med Chem 2006; 21: 87–93.

    Article  PubMed  Google Scholar 

  21. Li L, Wu X, Tian W. Inhibitory effect of polygonum multiflorum extract on fatty acid synthase. Journal of Graduate Univsersity of Chinese Academy of Sciences 2003; 19: 133–140 (Chinese).

    Google Scholar 

  22. Li BH, Tian WX. Presence of fatty acid synthase inhibitors in the rhizome of Alpinia officinarum hance. J Enzyme Inhib Med Chem 2003; 18: 349–356.

    Article  PubMed  CAS  Google Scholar 

  23. Cheng Q, Huang H, Fan F, et al. Inhibitory effect of ginkgo leaf extract on fatty acid synthase. Natural product application and development 2009; 19: 181–187.

    Google Scholar 

  24. Sun Y, Zhang R, Zhang S, et al. Night kodo extract inhibits fatty acid synthase and reduces the bodyweight and appetite of mice and rats. Journal of Graduate University of Chinese Academy of Sciences 2007; 24: 453–459 (Chinese).

    Google Scholar 

  25. Zhao WH, Gao C, Zhang YX, et al. Evaluation of the inhibitory activities of aceraceous plants on fatty acid synthase. J Enzyme Inhib Med Chem 2007; 22: 501–510.

    Article  PubMed  CAS  Google Scholar 

  26. Duthie GG, Duthie SJ, Kyle JA. Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutr Res Rev 2000; 13: 79–106.

    Article  PubMed  CAS  Google Scholar 

  27. Li BH, Tian WX. Inhibitory effects of flavonoids on animal fatty acid synthase. J Biochem 2004; 135: 85–91.

    Article  PubMed  CAS  Google Scholar 

  28. Li BH, Ma XF, Wang Y, et al. Structure-activity relationship of polyphenols that inhibit fatty acid synthase. J Biochem 2005; 138: 679–685.

    Article  PubMed  CAS  Google Scholar 

  29. Tian WX. Inhibition of fatty acid synthase by polyphenols. Curr Med Chem 2006; 13: 967–977.

    Article  PubMed  CAS  Google Scholar 

  30. Kuda T, Iwai A, Yano T. Effect of red pepper Capsicum annuum var. conoides and garlic Allium sativum on plasma lipid levels and cecal microflora in mice fed beef tallow. Food Chem Toxicol 2004; 42: 1695–1700.

    Article  PubMed  CAS  Google Scholar 

  31. Gabler NK, Osrowska E, Imsic M, et al. Dietary onion intake as part of a typical high fat diet improves indices of cardiovascular health using the mixed sex pig model. Plant Foods Hum Nutr 2006; 61: 179–185.

    Article  PubMed  CAS  Google Scholar 

  32. Tache S, Ladam A, Corpet DE. Chemoprevention of aberrant crypt foci in the colon of rats by dietary onion. Eur J Cancer 2007; 43: 454–458.

    Article  PubMed  CAS  Google Scholar 

  33. Hughes J, Tregova A, Tomsett AB, et al. Synthesis of the flavour precursor, alliin, in garlic tissue cultures. Phytochemistry 2005; 66: 187–194.

    Article  PubMed  CAS  Google Scholar 

  34. Sun XB, Tian WX. Inhibitory Effects of Allium Vegetable Extracts on Fatty Acid Synthase. Food Science and Technology Research 2009; 3: 343–346 (Chinese).

    Article  Google Scholar 

  35. Sun XB, Zhao J, Ma XF, et al. Inhibitory effects of thioethers on fatty acid synthase and 3T3-L1 cells. J Enzyme Inhib Med Chem 2010; 25: 290–295.

    Article  PubMed  CAS  Google Scholar 

  36. Zhang SY, Zheng CG, Yan XY, et al. Low concentration of condensed tannins from catechu significantly inhibits fatty acid synthase and growth of MCF-7 cells. Biochem Biophys Res Commun 2008; 371: 654–658.

    Article  PubMed  CAS  Google Scholar 

  37. Somova LO, Nadar A, Rammanan P, et al. Cardiovascular, antihyperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension. Phytomedicine 2003; 10: 115–121.

    Article  PubMed  CAS  Google Scholar 

  38. Jang SM, Yee ST, Choi J, et al. Ursolic acid enhances the cellular immune system and pancreatic betacell function in streptozotocin-induced diabetic mice fed a high-fat diet. Int Immunopharmacol 2009; 9: 113–119.

    Article  PubMed  CAS  Google Scholar 

  39. Dorai T, Aggarwal BB. Role of chemopreventive agents in cancer therapy. Cancer Lett 2004; 215: 129–140.

    Article  PubMed  CAS  Google Scholar 

  40. Safayhi H, Sailer ER. Anti-inflammatory actions of pentacyclic triterpenes. Planta Med 1997; 63: 487–493.

    Article  PubMed  CAS  Google Scholar 

  41. Liu Y, Tian W, Ma X, et al. Evaluation of inhibition of fatty acid synthase by ursolic acid: positive cooperation mechanism. Biochem Biophys Res Commun 2010; 392: 386–390.

    Article  PubMed  CAS  Google Scholar 

  42. Li BH, Ma XF, Wu XD, et al. Inhibitory activity of chlorogenic acid on enzymes involved in the fatty acid synthesis in animals and bacteria. IUBMB Life 2006; 58: 39–46.

    Article  PubMed  CAS  Google Scholar 

  43. Liang Y, Tian W, Ma X. Chemical components of Polygonum multiflorum Thunb. Journal of Shenyang Pharmaceutical University 2009; 26: 536–538 (Chinese).

    CAS  Google Scholar 

  44. Liang Y, Ma X, Tian W. Natural fatty acid synthase inhibitors from grape. 1st International Symposium on Edible Plant Resources and the Bioactive Ingredients. Urumchi China 2008; 213 (Chinese).

  45. Clarke SD, Armstrong MK, Jump DB: Nutritional control of rat liver fatty acid synthase and S14 mRNA abundance. J Nutr 1990; 120: 218–224.

    PubMed  CAS  Google Scholar 

  46. Friedman JM: Obesity in the new millennium. Nature 2000; 404: 632–634.

    PubMed  CAS  Google Scholar 

  47. Tian W, Dong Y, Quan H, et al. The dependence of fat level of Hen on activity of fatty acid synthase in liver on different ages. Chinese Biochemistry Journal 1996; 12: 234–236 (Chinese).

    CAS  Google Scholar 

  48. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer 2011; 11: 85–95.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-xi Tian.

About this article

Cite this article

Tian, Wx., Ma, Xf., Zhang, Sy. et al. Fatty acid synthase inhibitors from plants and their potential application in the prevention of metabolic syndrome. Clin. Oncol. Cancer Res. 8, 1–9 (2011). https://doi.org/10.1007/s11805-011-0550-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11805-011-0550-3

Key Words

Navigation