Skip to main content
Log in

Nonautonomous and non periodic Schrödinger equation with indefinite linear part

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

The existence of solution of the nonlinear Schrödinger equation

$$\begin{aligned} \begin{array}{lc} -\Delta u + V(x) u = f(x,u),&\end{array} \end{aligned}$$

is stablished in \(\mathbb {R}^N\), where V changes sign and f is an asymptotically linear function at infinity, with V and f non periodic in x. Spectral theory, a classical linking theorem and interaction between translated solutions of the problem at infinity are employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermann, N., Clapp, M., Pacella, F.: Alternating sign multibump solutions of nonlinear elliptic equations in expanding tubular domains. Commun. Partial Differ. Equ. 38(5), 751–779 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azzollini, A., Pomponio, A.: On the Schrödinger equation in \(\mathbb{R}^N\) under the effect of a general nonlinear term. Indiana Univ. Math. J. 58, 1361–1378 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)

    MathSciNet  MATH  Google Scholar 

  4. Cerami, G.: Un criterio di ezistenza per i punti critici su varietà illimitate. Rend. Accad. Sci. Lett. Inst. Lombardo 112, 332–336 (1978)

    Google Scholar 

  5. Costa, D.G., Tehrani, H.: Existence and multiplicity results for a class of Schrödinger equations with indefinite nonlinearities. Adv. Differ. Equ. 8, 1319–1340 (2003)

    MATH  Google Scholar 

  6. Egorov, Y., Kondratiev, V.: On spectral theorey of elliptic operators. Birkhäuser, Basel (1996)

    Book  MATH  Google Scholar 

  7. Jeanjean, L.: On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \(\mathbb{R}^N\). Proc. R. Soc. Edinburgh Sect. A 129, 787–809 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jeanjean, L., Tanaka, K.: A positive solution for an asymptotically linear elliptic problem on \(\mathbb{R}^N\) autonomous at infinity. ESAIM Control Optim. Calc. Var. 7, 597–614 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kryszewski, W., Szulkin, A.: Generalized linking theorem with an application to semilinear Schrödinger equations. Adv. Differ. Equ. 3, 441–472 (1998)

    MATH  Google Scholar 

  10. Li, G., Szulkin, A.: An asymptotically periodic Schrödinger equation with indefinite linear part. Commun. Contemp. Math. 4, 763–776 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, G., Wang, C.: The existence of a nontrivial solution to a nonlinear elliptic problem of linking type without the Ambrosetti-Rabinowitz condition. Annales Academiae Scientiarum Fennicae 36, 461–480 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Parts I and II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 109–145 and 223–283 (1984)

  13. Maia, L.A, Oliveira Junior, J.C., Ruviaro, R.: A non periodic and asymptotically linear indefinite variational problem in \({\mathbb{R}^N}\), online Indiana University Mathematics Journal (2015)

  14. Pankov, A.A.: Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J. Math. 73, 259–287 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rabinowitz, P.H.: Some critical point theorems and applications to semilinear elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5, 215–223 (1978)

    MathSciNet  MATH  Google Scholar 

  16. Stuart, C.A.: An introduction to elliptic equation in \({\mathbb{R}^N}\), Trieste Notes (1998)

  17. Stuart, C.A., Zhou, H.S.: Applying the mountain pass theorem to an asymptotically linear elliptic equation on \(\mathbb{R}^N\). Commun. Partial Differ. Equ. 24, 1731–1758 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Szulkin, A., Weth, T.: Ground state solutions for some indefinite variational problems. J. Func. Anal. 257, 3802–3822 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Charles A. Stuart for elucidating many doubts in the spectral theory employed in the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Maia.

Additional information

Dedicated to Professor Paul H. Rabinowitz.

Research of the first and third authors are partially supported by CNPq/Brazil, PROEX/CAPES and FAPDF  193.000.939/2015.

Appendix

Appendix

Let \(\partial B_1\) be the boundary of \(B_1\), where \(B_1\) is the open ball of radius 1 in a finite dimensional space spanned by the functions \(u_0^+(\cdot -y),\phi _1,\ldots ,\phi _k\). We want to prove that

$$\begin{aligned} \displaystyle \lim _{R\rightarrow \infty } \displaystyle \int _{\mathbb {R}^N}\left( \displaystyle \frac{a(x)}{2} - \displaystyle \frac{F(x,Ru)}{(Ru)^2} \right) u^2dx = 0, \end{aligned}$$

uniformly for \(u\in \partial B_1\). Indeed, for each \(R=n\in \mathbb {N}\), consider \(J_n:\partial B_1 \rightarrow \mathbb {R}\) the functional given by \(J_n(u) = \displaystyle \int _{\mathbb {R}^N}\left( \displaystyle \frac{a(x)}{2} - \displaystyle \frac{F(x,nu)}{(nu)^2} \right) u^2dx\). The continuity of the function F shows that \(J_n\) is a continuous functional for each fixed n. Hypothesis \((f_4)\) and equivalence of the norms \(\Vert \cdot \Vert \) and \(\Vert \cdot \Vert _E\) show that there exists a constant \(C>0\) such that

$$\begin{aligned} 0 \le J_n(u)= \displaystyle \int _{\mathbb {R}^N}\left( \displaystyle \frac{a(x)}{2} - \displaystyle \frac{F(x,nu)}{(nu)^2} \right) u^2dx \le a_0\Vert u\Vert ^2_{E} \le C \end{aligned}$$

for all \(u\in \partial B_1\), where \(a_0=\sup _{\mathbb {R}^N} a(x)\). Hence the continuity of the functional \(J_n\) in the compact set \(\partial B_1\) ensures that, for each fixed n, the functional \(J_n\) assumes its maximum at \(u_n\in \partial B_1\). Consider \((u_n)\) the sequence of these maxima. Since \(\Vert u_n\Vert =1\) for each n and the space spanned by the functions \(u_0^+(\cdot -y),\phi _1,\ldots ,\phi _k\) is finite dimensional, there exists \(\overline{u}\in \partial B_1\) such that, up to a subsequence,

$$\begin{aligned} u_n\displaystyle \rightarrow \overline{u} \ \ \ \text {as} \ \ \ n\rightarrow \infty \end{aligned}$$
(5.1)

strongly in the norm \(\Vert \cdot \Vert \). For all \(u\in \partial B_1\) and for each n

$$\begin{aligned} 0\le J_n(u) \le J_n(u_n), \end{aligned}$$

that is,

$$\begin{aligned} 0 \le \displaystyle \int _{\mathbb {R}^N}\left( \displaystyle \frac{a(x)}{2} - \displaystyle \frac{F(x,nu)}{(nu)^2} \right) u^2dx \le \displaystyle \int _{\mathbb {R}^N}\left( \displaystyle \frac{a(x)}{2} - \displaystyle \frac{F(nu_n)}{(nu_n)^2} \right) u_n^2dx \end{aligned}$$
(5.2)

for all u and for each n. Taking the limit \(n\rightarrow \infty \), firstly, note that

$$\begin{aligned} u_n(x) \rightarrow \overline{u}(x) \ \ \ \text {a.e in} \ \ \ \mathbb {R}^N. \end{aligned}$$

Thus, if \(\overline{u}(x)\ne 0\), it follows that \(|n\overline{u}(x)|\rightarrow \infty \) if \(n\rightarrow \infty \). Hence hypothesis \((f_4)\) yields

$$\begin{aligned} \left( \displaystyle \frac{a(x)}{2} - \displaystyle \frac{F(x,nu_n(x))}{(nu_n(x))^2} \right) u_n(x)^2 \rightarrow 0 \end{aligned}$$
(5.3)

if \(n\rightarrow \infty \). If \(\overline{u}(x) = 0\), we also have (5.3). By the strongly convergence in (5.1), there exist a function \(\overline{h}\in L^1(\mathbb {R}^N)\) such that, up to a subsequence,

$$\begin{aligned} 0\le \left( \displaystyle \frac{a(x)}{2} - \displaystyle \frac{F(x,nu_n(x))}{(nu_n(x))^2} \right) u_n(x)^2 \le a_0|u^2_n(x)| \le a_0\overline{h}(x) \in L^1(\mathbb {R}^N). \end{aligned}$$
(5.4)

Finally, by (5.3) and (5.4), Lebesgue Dominated Convergence Theorem ensures that

$$\begin{aligned} \displaystyle \lim _{n\rightarrow \infty }\displaystyle \int _{\mathbb {R}^N}\left( \displaystyle \frac{a(x)}{2} - \displaystyle \frac{F(x,nu_n)}{(nu_n)^2} \right) u_n^2dx = 0. \end{aligned}$$

Therefore taking \(n\rightarrow \infty \) in (5.2), we have

$$\begin{aligned} \displaystyle \lim _{n\rightarrow \infty }\displaystyle \int _{\mathbb {R}^N}\left( \displaystyle \frac{a(x)}{2} - \displaystyle \frac{F(x,nu)}{(nu)^2} \right) u^2dx = 0 \end{aligned}$$

uniformly for \(u\in \partial B_1\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maia, L.A., Oliveira Junior, J.C. & Ruviaro, R. Nonautonomous and non periodic Schrödinger equation with indefinite linear part. J. Fixed Point Theory Appl. 19, 17–36 (2017). https://doi.org/10.1007/s11784-016-0346-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-016-0346-4

Keywords

Mathematics Subject Classification

Navigation