Skip to main content
Log in

An armature structure for 3D shapes

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

We present a novel armature structure for 3D articulated shapes, called SBall short for ‘skeletal balls’, which includes two parts: a one-dimensional skeleton and incident balls. Our algorithm mainly focuses on constructing the armature structure. This structure is based on an approximation skeleton which is homotopy equivalent to the shape. Each ball in the structure connects a skeletal joint and an interior region of the shape. The boundary vertices on the shape surface are attached onto the SBall using the power diagram of the ball set. A bilateral filtering algorithm and a variational segmentation algorithm are proposed to enhance the quality of SBall. Finally, applications of this structure are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N Amenta, S Choi, R Kolluri. The power crust, In: Proc 6th ACM Symp Solid Model Appl, 2001, 249–266.

    Google Scholar 

  2. D Attali, A Montanvert. Computing and simplifying 2d and 3d continuous skeletons, Comput Vision Image Underst, 1997, 67(3): 261–273.

    Article  Google Scholar 

  3. K Au, C Tai, H Chu, D Cohen-or, T Lee. Skeleton extraction by mesh contraction, ACM Trans Graph, 2008, 27(3): 1–10.

    Article  Google Scholar 

  4. F Aurenhammer. Improved algorithms for disc and balls using power diagrams, J Algorithms, 1988, 9(2): 151–161.

    Article  MathSciNet  MATH  Google Scholar 

  5. D Cohen-Steiner, D Alliez, M Desbrun. Variational shape approximation, ACM Trans Graph, 2004, 23(3): 905–914.

    Article  Google Scholar 

  6. S Choi, H Seidel. Linear one-sided stability of MAT for weakly injective 3D domain, Comput Aided Design, 2004, 36(2): 95–109.

    Article  Google Scholar 

  7. N Cornea N, D Silver, P Min. Curve-skeleton applications, In: Proc IEEE Vis, 2005, 95–102.

    Google Scholar 

  8. H Edelsbrunner. Weighted alpha shapes, In: Technical Report 1760, University of Illinois at Urbana-Champaign, 1992.

    Google Scholar 

  9. H Edelsbrunner. The union of balls and its dual shape, Discrete Comput Geom, 1995, 13: 415–440.

    Article  MathSciNet  MATH  Google Scholar 

  10. S Fleishman, I Drori, D Cohen-Or. Bilateral mesh denoising, In: Proc SIGGRAPH, 2003, 950–953.

    Google Scholar 

  11. L Fan, L Liu, K Liu. Paint mesh cutting, In: Comput Graph Forum (Proc Eurographics 2011), 30(2): 603–611.

  12. B Gareth, O’ S Carol. Sphere-tree construction using dynamic medial axis approximation, In: Proc ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2002, 33–40.

    Google Scholar 

  13. M Hilaga, Y Shinagawa, T Kohmura. Topology matching for fully automatic similarity estimation of 3d shapes, In: Proc SIGGRAPH, 2001, 203–211.

    Google Scholar 

  14. Z Ji, L Liu, Z Chen, G Wang. Easy mesh cutting, In: Proc Eurographics, 2006, 283–291.

    Google Scholar 

  15. Z Ji, L Liu, Y Wang. B-mesh: A modeling system for base meshes of 3D articulated shapes, In: Comput Graph Forum (Proc Pacific Graph), 2010, 2169–2178.

    Google Scholar 

  16. S Katz, G Leifman, A Tal. Mesh segmentation using feature point and core extraction, In: Proc Pacific Graph, 2005, 649–658.

    Google Scholar 

  17. F Lazarus, S Coquillart, P Jancene. Axial deformations: an intuitive deformation technique, Comput Aided Design, 1994, 26(8): 607–613.

    Article  MATH  Google Scholar 

  18. J Lien, J Keyser, N Amato. Simultaneous shape decomposition and skeletonization, In: Proc ACM Symp Solid Phys Model, 2006, 219–228.

    Google Scholar 

  19. N Magnenat-Thalmann, R Laperriére, D Thalmann. Joint-dependent local deformations for hand animation and object grasping, In: Proc SIGGRAPH, 1988, 26–33.

    Google Scholar 

  20. R Ogniewicz, M Ilg. Voronoi skeletons: theory and applications, In: Proc IEEE Conf Comput Vision Pattern Recognition, 1992, 63–69.

    Google Scholar 

  21. V Pascucci, G Scorzelli, P Bremer, A Mascarenhas. Robust on-line computation of reeb graphs: simplicity and speed, In: Proc SIGGRAPH, 2007, Article No 58.

    Google Scholar 

  22. A Shamir, S Amir. Skeleton based solid representation with topology preservation, Graph Models, 2006, 68(3): 307–321.

    Article  MATH  Google Scholar 

  23. A Shamir, A Sharf, D Cohen-or. Enhanced hierarchical shape matching for shape transformation, J Shape Model, 2003, 9(2): 203–222.

    Article  MATH  Google Scholar 

  24. R Tam, W Heidrich. Feature-preserving medial axis noise removal, In: ECCV, 2002, 672–686.

    Google Scholar 

  25. C Tomasi, R Manduchi. Bilateral filtering for gray and color images, In: Proce Sixth Int Conf Comput Vision, 1998, 839–846.

    Google Scholar 

  26. G Treece, R Prager, A Gee. Volume-based three-dimensional metamorphosis using sphere-guided region correspondence, Visual Comput, 2001, 17(7): 397–414.

    Article  Google Scholar 

  27. K Tamal, J Sun. Defining and computing curve-skeletons with medial geodesic function, In: Proc Eurographics Symp Geom, 2006, 143–152.

    Google Scholar 

  28. T Marek, T Seth. Assisted articulation of closed polygonal models, In: Proc Eurographics Workshop Animation Simul, 1998, 254–268.

    Google Scholar 

  29. A Tagliasacchi, H Zhang, D Cohen-or. Curve skeleton extraction from incomplete point cloud, ACMTrans Graph, 2009, 28(3): 71–79.

    Google Scholar 

  30. F Wu, B Chen, R Liang, M Ouhyoung. Prong-features-detection-of prong features detection of a 3d model based on the watershed algorithm, In: Proc SIGGRAPH Sketches, 2005.

    Google Scholar 

  31. Y Wang, T Lee. Curve-skeleton extraction using iterative least squares, IEEE Trans Vis Comput Graph, 2008, 14(4): 926–936.

    Article  MathSciNet  Google Scholar 

  32. F Wu, W Ma, B Chen, M Ouyang. Domain connected graph: the skeleton of a closed 3d shape for animation, Visual Comput, 2006, 22(2): 117–135.

    Article  Google Scholar 

  33. D Yan, Y Liu, W Wang. Quadric surface extraction by variational shape approximation, In: Geom Model Proc, 2006, 73–86.

    Google Scholar 

  34. J Zhang, C Wu, J Cai, J Zheng, T X Cheng. Mesh snapping: Robust interactive mesh cutting using fast geodesic curvature flow, In: Comput Graph Forum (Proc Eurographics 2010), 29(2): 517–526.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-ping Ji.

Additional information

Supported by the National Natural Science Foundation of China (61202278 and 61222206) and the Zhejiang Natural Science Foundation of China (Y1111101).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Zp., Liu, Lg. & Kim, Ds. An armature structure for 3D shapes. Appl. Math. J. Chin. Univ. 29, 422–437 (2014). https://doi.org/10.1007/s11766-014-3237-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-014-3237-8

MR Subject Classification

Keywords

Navigation