Skip to main content
Log in

An Improved Method for Analysis of Glucosylceramide Species Having cis-8 and trans-8 Isomers of Sphingoid Bases by LC–MS/MS

  • Methods
  • Published:
Lipids

Abstract

High-performance liquid chromatography–electrospray ionization tandem mass spectrometry (HPLC–ESI–MS/MS) approaches have enabled high selectivity and sensitivity for the identification and quantification of glucosylceramide molecular species. Here we demonstrate that HPLC–ESI–MS/MS is an efficient method for characterizing plant glucosylceramide species having the cis-8 and trans-8 isomers of sphingoid bases. Complete baseline separation was achieved using a high-carbon-content octadecylsilyl column and a simple binary gradient comprising methanol and water. The result of 2-hydroxy fatty acid composition achieved by HPLC–ESI–MS/MS was compared with that achieved by gas chromatography with flame ionization detection (GC–FID), indicating that the two methods yield similar molar compositions. The current method should be applicable to seeking the active components of glucosylceramide species from plant materials in response to biological challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

d18:2(t4,c8):

trans-4,cis-8-Sphingadienine

d18:2(t4,t8):

trans-4,trans-8-Sphingadienine

ESI:

Electrospray ionization

FID:

Flame ionization detection

GC:

Gas chromatography

Glc:

Glucose

HPLC:

High-performance liquid chromatography

LC:

Liquid chromatography

MS/MS:

Tandem mass spectrometry

ODS:

Octadecylsilyl

t18:1(c8):

4-Hydroxy-cis-8-sphingenine

t18:1(t8):

4-Hydroxy-trans-8-sphingenine

References

  1. Steponkus PL, Uemura M, Webb MS (1993) A contrast of the cryostability of the plasma membrane of winter rye and spring oat—two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In: Steponkus PL (ed) Advances in low-temperature biology vol 2. JAI Press Ltd., London, pp 211–312

    Google Scholar 

  2. Minami A, Furumoto A, Uemura M (2010) Dynamic compositional changes of detergent-resistant plasma membrane microdomains during plant cold acclimation. Plant Signal Behav 5:115–118

    Article  Google Scholar 

  3. Jennemann R, Sandhoff R, Langbein L, Kaden S, Rothermel U, Gallala H, Sandhoff K, Wiegandt H, Gröne HJ (2007) Integrity and barrier function of the epidermis critically depend on glucosylceramide synthesis. J Biol Chem 282:3083–3094

    Article  PubMed  CAS  Google Scholar 

  4. Tsuji K, Mitsutake S, Ishikawa J, Takagi Y, Akiyama M, Shimizu H, Tomiyama T, Igarashi Y (2006) Dietary glucosylceramide improves skin barrier function in hairless mice. J Dermatol Sci 44:101–107

    Article  PubMed  CAS  Google Scholar 

  5. Uchiyama T, Nakano Y, Ueda O, Mori H, Nakashima M, Noda A, Ishizaki C, Mizoguchi M (2008) Oral intake of glucosylceramide improves relatively higher level of transepidermal water loss in mice and healthy human subjects. J Health Sci 54:559–566

    Article  CAS  Google Scholar 

  6. Ideta R, Sakuta T, Nakano Y, Uchiyama T (2011) Orally administered glucosylceramide improves the skin barrier function by upregulating genes associated with the tight junction and cornified envelope formation. Biosci Biotechnol Biochem 75:151615–151623

    Article  Google Scholar 

  7. Ohnishi M, Ito S, Fujino Y (1983) Characterization of sphingolipids in spinach leaves. Biochim Biophys Acta 752:416–422

    Article  CAS  Google Scholar 

  8. Imai H, Morimoro Y, Tamura K (2000) Sphingoid base composition of monoglucosylceramide in Brassicaceae. J Plant Physiol 157:453–456

    Article  CAS  Google Scholar 

  9. Minamioka H, Imai H (2009) Sphingoid long-chain base composition of glucosylceramides in Fabaceae: a phylogenetic interpretation of Fabaceae. J Plant Res 22:415–419

    Article  Google Scholar 

  10. Bartke N, Fischbeck A, Humpf HU (2006) Analysis of sphingolipids in potatoes (Solanum tuberosum L.) and sweet potatoes (Ipomoea batatas (L.) Lam.) by reversed phase high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Mol Nutr Food Res 50:1201–1211

    Article  PubMed  CAS  Google Scholar 

  11. Markham JE, Jaworski JG (2007) Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high performance-liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21:1304–1314

    Article  PubMed  CAS  Google Scholar 

  12. Sugawara T, Duan J, Aida K, Tsuduki T, Hirata T (2010) Identification of glucosylceramides containing sphingatrienine in maize and rice using ion trap mass spectrometry. Lipids 45:451–455

    Article  PubMed  CAS  Google Scholar 

  13. Sugawara T, Aida K, Duan J, Hirata T (2010) Analysis of glucosylceramides from various sources by liquid chromatography-ion trap mass spectrometry. J Oleo Sci 59:387–394

    Article  PubMed  CAS  Google Scholar 

  14. Watanabe M, Miyagi A, Nagano M, Kawai-Yamada M, Imai H (2011) Characterization of glucosylceramides in the Polygonaceae, Rumex obtusifolius L. injurious weed. Biosci Biotechnol Biochem 75:877–881

    Article  PubMed  CAS  Google Scholar 

  15. Ohnishi M, Imai H, Kojima M, Yoshida S, Murata N, Fujino Y, Ito S (1988) Separation of cerebroside species in plants by reserved-phase HPLC and their phase transition temperature. In: Proceedings of ISF-JOCS world congress, vol 2, The Japan Oil Chemists’ Society, Tokyo, pp 930–935

  16. Cahoon EB, Lynch DV (1991) Analysis of Glucocerebrosides of Rye (Secale cereale L. cv Puma) leaf and plasma membrane. Plant Physiol 95:58–68

    Article  PubMed  CAS  Google Scholar 

  17. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  18. Chu CC, Wang CC, Sun CS, Hsu C, Yin KC, Chu CY, Bi FY (1975) Establishment of an efficient medium for another culture of rice through comparative experiments on the nitrogen sources. Sci Sin 18:659–668

    Google Scholar 

  19. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  20. Imai H, Yamamoto K, Shibahara A, Miyatani S, Nakayama T (2000) Determining double-bond positions in monoenoic 2-hydroxy fatty acids of glucosylceramides by gas chromatography-mass spectrometry. Lipids 35:233–236

    Article  PubMed  CAS  Google Scholar 

  21. Hirabayashi Y, Hamaoka A, Matsumoto M, Nishimura K (1986) An improved method for the separation of molecular species of cerebrosides. Lipids 21:710–714

    Article  PubMed  CAS  Google Scholar 

  22. Watanabe M, Imai H (2011) Characterization of glucosylceramides in leaves of the grass family (Poaceae): pooideae has unsaturated hydroxy fatty acids. Biosci Biotechnol Biochem 75:1838–1841

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ayae Wada for technical and experimental assistance. We also thank Dr. Kouhei Yamamoto, Osaka Prefecture University, for his valuable advice. Parts of this work were supported by Special Ordinary Expense Subsidies for Private Universities from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Imai.

About this article

Cite this article

Imai, H., Hattori, H. & Watanabe, M. An Improved Method for Analysis of Glucosylceramide Species Having cis-8 and trans-8 Isomers of Sphingoid Bases by LC–MS/MS. Lipids 47, 1221–1229 (2012). https://doi.org/10.1007/s11745-012-3725-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-012-3725-7

Keywords

Navigation