Skip to main content
Log in

Bacterial Predators Possess Unique Membrane Lipid Structures

  • Methods
  • Published:
Lipids

Abstract

Bdellovibrio-and-like organisms (BALO) are a phylogenetically diverse group of predatory prokaryotes that consists of the two families Bdellovibrionaceae and Bacteriovoracaceae. We investigated the phospholipid composition of the three important BALO strains Bacteriovorax stolpii (DSM 12778), Bdellovibrio bacteriovorus HD100 (DSM 50701) and Peredibacter starrii (DSM 17039). We confirmed the presence of sphingophosphonolipids in B. stolpii, while we characterized sphingophosphonolipids with a 2-amino-3-phosphonopropanate head group for the first time. In B. bacteriovorus HD100 phosphatidylthreonines were found and, thus, B. bacteriovorus is the second prokaryote investigated so far possessing this rare lipid class. In the third analyzed organism, P. starrii, we observed phosphatidylethanolamine structures with an additional N-glutamyl residue, which form the first reported class of amino acid-containing phosphatidylethanolamines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

1D:

One dimensional

AEP:

2-Aminoethylphosphonate

APP:

2-Amino-3-phosphonopropanate

BALO:

Bdellovibrio-and-like organism

EI/MS:

Electron impact ionization mass spectrometry

FA:

Fatty acid

FT–MS:

Fourier transform mass spectrometry

GC:

Gas chromatography

GluPtdEth:

Glutamylphosphatidylethanolamine

GPL:

Glycerophospholipid

HAEP:

1-Hydroxy-2-aminoethylphosphonate

HPLC:

High-performance liquid chromatography

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

MTBE:

Methyl tert-butyl ether

NAPtdEth:

N-acylphosphatidylethanolamine

OMP:

Outer membrane protein

Ptd2Gro:

Cardiolipin

PtdCho:

Phosphatidylcholine

PtdEth:

Phosphatidylethanolamine

PtdGro:

Phosphatidylglycerol

PtdIns:

Phosphatidylinositol

PtdOH:

Phosphatidic acid

PtdSer:

Phosphatidylserine

PtdThr:

Phosphatidylthreonine

rRNA:

Ribosomal ribonucleic acid

SPNL:

Sphingophosphonolipid

TLC:

Thin layer chromatography

References

  1. Stolp H, Petzold H (1962) Untersuchungen über einen obligat parasitischen Mikroorganismus mit lytischer Aktivität für Pseudomonas-Bakterien. Phytopathol Z 45:364–390

    Article  Google Scholar 

  2. Stolp H, Starr MP (1963) Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie Van Leeuwenhoek J Microbiol Serol 29:217–248

    Article  CAS  Google Scholar 

  3. Jurkevitch E, Davidov Y (2007) Phylogenetic diversity and evolution of predatory prokaryotes. In: Jurkevitch E (ed) Predatory prokaryotes: biology, ecology and evolution, Springer, Berlin, pp 11–56

  4. Davidov Y, Jurkevitch E (2004) Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax-Peredibacter clade as Bacteriovoracaceae fam. nov. Int J Syst Evol Microbiol 54:1439–1452

    Article  PubMed  CAS  Google Scholar 

  5. Beck S, Schwudke D, Appel B, Linscheid M, Strauch E (2005) Characterization of outer membrane protein fractions of Bdellovibrionales. Fems Microbiol Lett 243:211–217

    Article  PubMed  CAS  Google Scholar 

  6. Beck S, Schwudke D, Strauch E, Appel B, Linscheid M (2004) Bdellovibrio bacteriovorus strains produce a novel major outer membrane protein during predacious growth in the periplasm of prey bacteria. J Bacteriol 186:2766–2773

    Article  PubMed  CAS  Google Scholar 

  7. Schwudke D, Linscheid M, Strauch E, Appel B, Zähringer U, Moll H, Müller M, Brecker L, Gronow S, Lindner B (2003) The obligate predatory Bdellovibrio bacteriovorus possesses a neutral lipid A containing alpha-D-mannoses that replace phosphate residues—similarities and differences between the lipid As and the lipopolysaccharides of the wild type strain B. bacteriovorus HD100 and its host-independent derivative HI100. J Biol Chem 278:27502–27512

    Article  PubMed  CAS  Google Scholar 

  8. Müller FD, Beck S, Strauch E, Brecker L, Linscheid MW (2010) Chemical structure of Bacteriovorax stolpii lipid A. Lipids 45:189–198

    Article  PubMed  Google Scholar 

  9. Jayasimhulu K, Hunt SM, Kaneshiro ES, Watanabe Y, Giner JL (2007) Detection and identification of Bacteriovorax stolpii UKi2 sphingophosphonolipid molecular species. J Am Soc Mass Spectrom 18:394–403

    Article  PubMed  CAS  Google Scholar 

  10. Steiner S, Conti SF, Lester RL (1973) Occurrence of Phosphonosphingolipids in Bdellovibrio bacteriovorus Strain Uki2. J Bacteriol 116:1199–1211

    PubMed  CAS  Google Scholar 

  11. Watanabe Y, Nakajima M, Hoshino T, Jayasimhulu K, Brooks EE, Kaneshiro ES (2001) A novel sphingophosphonolipid head group 1-hydroxy-2-aminoethyl phosphonate in Bdellovibrio stolpii. Lipids 36:513–519

    Article  PubMed  CAS  Google Scholar 

  12. Nguyen NAT, Sallans L, Kaneshiro ES (2008) The major glycerophospholipids of the predatory and parasitic bacterium Bdellovibrio bacteriovorus HID5. Lipids 43:1053–1063

    Article  PubMed  CAS  Google Scholar 

  13. Sohlenkamp C, López-Lara IM, Geiger O (2003) Biosynthesis of phosphatidylcholine in bacteria. Prog Lipid Res 42:115–162

    Article  PubMed  CAS  Google Scholar 

  14. Naka T, Fujiwara N, Yano I, Maeda S, Doe M, Minamino M, Ikeda N, Kato Y, Watabe K, Kumazawa Y, Tomiyasu I, Kobayashi K (2003) Structural analysis of sphingophospholipids derived from Sphingobacterium spiritivorum, the type species of genus Sphingobacterium. Biochim Biophys Acta Mol Cell Biol Lipids 1635:83–92

    CAS  Google Scholar 

  15. White DC, Sutton SD, Ringelberg DB (1996) The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 7:301–306

    Article  PubMed  CAS  Google Scholar 

  16. Aktas M, Wessel M, Hacker S, Klüsener S, Gleichenhagen J, Narberhaus F (2010) Phosphatidylcholine biosynthesis and its significance in bacteria interacting with eukaryotic cells. Eur J Cell Biol 89:888–894

    Article  PubMed  CAS  Google Scholar 

  17. Brennan PJ, Lehane DP (1971) Phospholipids of Corynebacteria. Lipids 6:401–409

    Article  PubMed  CAS  Google Scholar 

  18. Geiger O, González-Silva N, López-Lara IM, Sohlenkamp C (2010) Amino acid-containing membrane lipids in bacteria. Prog Lipid Res 49:46–60

    Article  PubMed  CAS  Google Scholar 

  19. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49:1137–1146

    Article  PubMed  CAS  Google Scholar 

  20. Hein EM, Blank LM, Heyland J, Baumbach JI, Schmid A, Hayen H (2009) Glycerophospholipid profiling by high-performance liquid chromatography/mass spectrometry using exact mass measurements and multi-stage mass spectrometric fragmentation experiments in parallel. Rapid Commun Mass Spectrom 23:1636–1646

    Article  PubMed  CAS  Google Scholar 

  21. Vernooij EAAM, Brouwers JFHM, Kettenes-van den Bosch JJ, Crommelin DJA (2002) RP-HPLC/ESI MS determination of acyl chain positions in phospholipids. J Sep Sci 25:285–289

    Article  CAS  Google Scholar 

  22. Hein EM, Bödeker B, Nolte J, Hayen H (2010) Software tool for mining liquid chromatography/multi-stage mass spectrometry data for comprehensive glycerophospholipid profiling. Rapid Commun Mass Spectrom 24:2083–2092

    Article  PubMed  CAS  Google Scholar 

  23. White T, Bursten S, Federighi D, Lewis RA, Nudelman E (1998) High-resolution separation and quantification of neutral lipid and phospholipid species in mammalian cells and sera by multi-one-dimensional thin-layer chromatography. Anal Biochem 258:109–117

    Article  PubMed  CAS  Google Scholar 

  24. Mitoma J, Kasama T, Furuya S, Hirabayashi Y (1998) Occurrence of an unusual phospholipid, phosphatidyl-l-threonine, in cultured hippocampal neurons—exogenous l-serine is required for the synthesis of neuronal phosphatidyl-l-serine and sphingolipids. J Biol Chem 273:19363–19366

    Article  PubMed  CAS  Google Scholar 

  25. Andersson BA, Holman RT (1974) Pyrrolidides for mass-spectrometric determination of the position of the double bond in monounsaturated fatty acids. Lipids 9:185–190

    Article  PubMed  CAS  Google Scholar 

  26. Destaillats F, Angers P (2002) One-step methodology for the synthesis of FA picolinyl esters from intact lipids. J Am Oil Chem Soc 79:253–256

    Article  CAS  Google Scholar 

  27. Martin SF, DeBlanc RL, Hergenrother PJ (2000) Determination of the substrate specificity of the phospholipase D from Streptomyces chromofuscus via an inorganic phosphate quantitation assay. Anal Biochem 278:106–110

    Article  PubMed  CAS  Google Scholar 

  28. Brondz I (2002) Development of fatty acid analysis by high-performance liquid chromatography, gas chromatography, and related techniques. Anal Chim Acta 465:1–37

    Article  CAS  Google Scholar 

  29. Orgambide GG, Reusch RN, Dazzo FB (1993) Methoxylated fatty-acids reported in Rhizobium isolates arise from chemical alterations of common fatty-acids upon acid-catalyzed transesterification procedures. J Bacteriol 175:4922–4926

    PubMed  CAS  Google Scholar 

  30. Matesic DF, Kaneshiro ES (1984) Incorporation of serine into Paramecium ethanolamine phospholipid and phosphonolipid head groups. Biochem J 222:229–233

    PubMed  CAS  Google Scholar 

  31. Warren WA (1968) Biosynthesis of phosphonic acids in Tetrahymena. Biochim Biophys Acta 156:340–346

    Article  PubMed  CAS  Google Scholar 

  32. Horigane A, Horiguchi M, Matsumoto T (1979) Metabolism of 2-amino-3-phosphonopropionic acid in rats. Biochim Biophys Acta 572:385–394

    PubMed  CAS  Google Scholar 

  33. Kaneshiro ES (1987) Lipids of Paramecium. J Lipid Res 28:1241–1258

    PubMed  CAS  Google Scholar 

  34. Rosenberg H (1973) Phosphonolipids. In: Ansell GB, Hawthorne JN, Dawson RMC (eds) Form and function of phospholipids. Elsevier Scientific Publishing Company, Amsterdam, pp 333–344

  35. Kaneshiro ES, Hunt SA, Watanabe Y (2008) Bacteriovorax stolpii proliferation and predation without sphingophosphonolipids. Biochem Biophys Res Commun 367:21–25

    Article  PubMed  CAS  Google Scholar 

  36. Heikinheimo L, Somerharju P (2002) Translocation of phosphatidylthreonine and -serine to mitochondria diminishes exponentially with increasing molecular hydrophobicity. Traffic 3:367–377

    Article  PubMed  CAS  Google Scholar 

  37. Ivanova PT, Milne SB, Brown HA (2010) Identification of atypical ether-linked glycerophospholipid species in macrophages by mass spectrometry. J Lipid Res 51:1581–1590

    Article  PubMed  CAS  Google Scholar 

  38. Markmalchoff D, Marinetti GV, Hare GD, Meisler A (1978) Characterization of phosphatidylthreonine in polyoma virus transformed fibroblasts. Biochemistry 17:2684–2688

    Article  CAS  Google Scholar 

  39. Guan Z, Johnston NC, Aygun-Sunar S, Daldal F, Raetz CRH, Goldfine H (2011) Structural characterization of the polar lipids of Clostridium novyi NT. Further evidence for a novel anaerobic biosynthetic pathway to plasmalogens. Biochim Biophys Acta Mol Cell Biol Lipids 1811:186–193

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft Grant LI309/29-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Linscheid.

About this article

Cite this article

Müller, F.D., Beck, S., Strauch, E. et al. Bacterial Predators Possess Unique Membrane Lipid Structures. Lipids 46, 1129–1140 (2011). https://doi.org/10.1007/s11745-011-3614-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3614-5

Keywords

Navigation