, Volume 46, Issue 1, pp 25-36,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 17 Sep 2010

Elucidation of Phosphatidylcholine Composition in Krill Oil Extracted from Euphausia superba

Abstract

High performance liquid chromatography-electrospray tandem mass spectrometry was used to elucidate the phospholipids in krill oil extracted from Euphausia superba, an emerging source for human nutritional supplements. The study was carried out in order to map the species of the choline-containing phospholipid classes: phosphatidylcholine and lyso-phosphatidylcholine. In addition, the prevalent phosphatidylcholine class was quantified and the results compared with prior analysis. The qualification was performed with separation on a reverse phase chromatography column, while the quantification was obtained with class separation on a normal phase chromatography column. An Orbitrap system was used for the detection, and pulsed-Q dissociation fragmentation was utilized for the identification of the species. An asymmetrical exclusion list was applied for detection of phospholipid species of lower concentration, significantly improving the number of species observed. A total of 69 choline-containing phospholipids were detected, whereof 60 phosphatidylcholine substances, among others seven with probable omega-3 fatty acids in both sn-1 and sn-2. The phosphatidylcholine concentration was estimated to be 34 ± 5 g/100 g oil (n = 5). These results confirm the complexity of the phospholipid composition of krill oil, and the presence of long chained, heavily unsaturated fatty acids.