Skip to main content
Log in

Enhancement of G protein-coupled signaling by DHA phospholipids

  • Articles
  • Published:
Lipids

Abstract

The effect of phospholipid acyl chain and cholesterol composition on G protein-coupled signaling was studied in native rod outer segment (ROS) disk and reconstituted membranes by measuring several steps in the visual transduction pathway. The cholesterol content of disk membranes was varied from 4 to 38 mol% cholesterol with methyl-β-cyclodextrin. The visual signal transduction system [rhodopsin, G protein (Gt), and phosphodiesterase (PDE)] was reconstituted with membranes containing various levels of phospholipid acyl chain unsaturation, with and without cholesterol. ROS membranes from rats raised on n−3 fatty acid-deficient and-adequate diets were also studied. The ability of rhodopsin to form the active metarhodopsin II conformation and bind Gt was diminished by a reduction in the level of DHA (22∶6n−3) acyl chains or an increase in membrane cholesterol. DHA acyl chain containing phospholipids minimized the inhibitory effects of cholesterol on the rate of rhodopsin-Gt coupling. The activity of PDE, which is a measure of the integrated signal response, was reduced in membranes lacking or deficient in DHA acyl chains. PDE activity in membranes containing docosapentaenoic acid (DPA, 22∶5n−6) acyl chains, which replace DHA in n−3 fatty acid deficiency, was 50% lower than in DHA-containing membranes. Our results indicate that efficient and rapid propagation of G protein-coupled signaling is optimized by DHA phospholipid acyl chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DPA:

docosapentaenoic acid, 22∶5n−6

DPH:

1,6-diphenyl-1,3,5-hexatriene

DTPA:

diethylenetriamine pentaacetic acid

ERG:

electroretinogram

f v :

membrane free volume parameter

GABA:

γ-amino butyric acid

Gt :

transducin

K a :

MII·Gt association constant

K eq :

MI-MII equilibrium constant, [MII]/[MI]

MBCD:

methyl-β-cyclodextrin

MI:

metarhodopsin I

MII:

metarhodopsin II

PDE:

phosphodiesterase

Rh* :

fraction of rhodopsin molecules that absorb a photon

ROS:

rod outer segment

TBS:

Tris basal salt

References

  1. Simons, K., and Ehehalt, R. (2002) Cholesterol, Lipid Rafts, and Disease, J. Clin. Investig. 110, 597–603.

    Article  CAS  PubMed  Google Scholar 

  2. Ntambi, J.M., and Bene, H. (2001) Polyunsaturated Fatty Acid Regulation of Gene Expression, J. Mol. Neurosci. 16, 273–278.

    Article  CAS  PubMed  Google Scholar 

  3. Neuringer, M. (2000) Infant Vision and Retinal Function in Studies of Dietary Long-Chain Polyunsaturated Fatty Acids: Methods, Results, and Implications, Am. J. Clin. Nutr. 71 (1. Suppl.), 256S-267S.

    CAS  PubMed  Google Scholar 

  4. Carlson, S.E. (2001) Docosahexaenoic Acid and Arachidonic Acid in Infant Development, Semin. Neonatol. 6, 437–449.

    Article  CAS  PubMed  Google Scholar 

  5. Koletzko, B., Agostoni, C., Carlson, S.E., Clandinin, T., Hornstra, G., Neuringer, M., Uauy, R., Yamashiro, Y., and Willatts, P. (2001) Long Chain Polyunsaturated Fatty Acids (LC-PUFA) and Perinatal Development, Acta Paediatr. 90, 460–464.

    CAS  PubMed  Google Scholar 

  6. O'Brien, D.F., Costa, L.F., and Ott, R.A. (1977) Photochemical Functionality of Rhodopsin-Phospholipid Recombinant Membranes, Biochemistry 16, 1295–1303.

    Article  PubMed  Google Scholar 

  7. Wiedmann, T.S., Pates, R.D., Beach, J.M., Salmon, A., and Brown, M.F. (1988) Lipid-Protein Interactions Mediate the Photochemical Function of Rhodopsin, Biochemistry 27, 6469–6474.

    Article  CAS  PubMed  Google Scholar 

  8. Brown, M.F. (1994) Modulation of Rhodopsin Function by Properties of the Membrane Bilayer, Chem. Phys. Lipids 73, 159–180.

    Article  CAS  PubMed  Google Scholar 

  9. Bourne, H.R. (1997) How Receptors Talk to Trimeric G Proteins, Curr. Opin. Cell Biol. 9, 134–142.

    Article  CAS  PubMed  Google Scholar 

  10. Stinson, A.M., Wiegand, R.D., and Anderson, R.E. (1991) Fatty Acid and Molecular Species Compositions of Phospholipids and Diacylglycerols from Rat Retinal Membranes, Exp. Eye Res. 52, 218.

    Google Scholar 

  11. Salem, N., Jr., Hullin, F., Yoffe, A.M., Karanian, J.W., and Kim, H.Y. (1989) Fatty Acid and Phospholipid Species Composition of Rat Tissues After a Fish Oil Diet, Adv. Prostaglandin Thromboxane Leukotriene Res. 19, 618–622.

    CAS  Google Scholar 

  12. Galli, C., Trzeciak, H.I., and Paoletti, R. (1972) Effects of Essential Fatty Acid Deficiency on Myelin and Various Subcellular Structures in Rat Brain, J. Neurochem. 19, 1863–1867.

    Article  CAS  PubMed  Google Scholar 

  13. Benolken, R.M., Anderson, R.E., and Wheeler, T.G. (1973) Membrane Fatty Acids Associated with Electrical Response in Visual Excitation, Science 182, 1253–1254.

    Article  CAS  PubMed  Google Scholar 

  14. Birch, D.G., Birch, E.E., Hoffman, D.R., and Uauy, R.D. (1992) Retinal Development in Very Low Birth Weight Infants Fed Diets Differing in Omega-3 Fatty Acids, Investig. Ophthalmol. Vis. Sci. 33, 2365–2376.

    CAS  Google Scholar 

  15. Bourre, J.M., Francois, M., Youyou, A., Dumont, O., Picotti, M.J., Pascal, G.A., and Durand, G. (1989) The Effects of Dietary α-Linolenic Acid on the Composition of Nerve Membranes, Enzymatic Activity, a Multitude of Electrophysiological Parameters, Resistance to Poisons and Performance of Learning Tasks, J. Nutr. 119, 1880–1892.

    CAS  PubMed  Google Scholar 

  16. Greiner, R.S., Moriguchi, T., Hutton, A., Slotnick, B.M., and Salem, N., Jr. (1999) Rats with Low Levels of Brain Docosahexaenoic Acid Show Impaired Performance in Olfactory-Based and Spatial Learning Tasks, Lipids 34 (Suppl.), S239-S243.

    CAS  PubMed  Google Scholar 

  17. Moriguchi, T., Greiner, R.S., and Salem, N., Jr. (2000) Behavioral Deficits Associated with Dietary Induction of Decreased Brain Docosahexaenoic Acid Concentration, J. Neurochem. 75, 2563–2573.

    Article  CAS  PubMed  Google Scholar 

  18. Matsuda, T., Takao, T., Shimonishi, Y., Murata, M., Asano, T., Yoshizawa, T., and Fukada, Y. (1994) Characterization of Interactions Between Transducin α/β γ-Subunits and Lipid Membranes, J. Biol. Chem. 269, 30358–30363.

    CAS  PubMed  Google Scholar 

  19. Kisselev, O.G., Ermolaeva, M.V., and Gautam, N. (1994) A Farnesylated Domain in the G Protein γ Subunit Is a Specific Determinant of Receptor Coupling, J. Biol. Chem. 269, 21399–21402.

    CAS  PubMed  Google Scholar 

  20. Seitz, H.R., Heck, M., Hofmann, K.P., Alt, T., Pellaud, J., and Seelig, A. (1999) Molecular Determinants of the Reversible Membrane Anchorage of the G-Protein Transducin, Biochemistry 38, 7950–7960.

    Article  CAS  PubMed  Google Scholar 

  21. Ernst, O.P., Meyer, C.K., Marin, E.P., Henklein, P., Fu, W.Y., Sakmar, T.P., and Hofmann, K.P. (2000) Mulation of the Fourth Cytoplasmic Loop of Rhodopsin Affects Binding of Transducin and Peptides Derived from the Carboxyl-Terminal Sequences of Transducin α and γ Subunits, J. Biol. Chem. 275, 1937–1943.

    Article  CAS  PubMed  Google Scholar 

  22. Farahbakhsh, Z.T., Ridge, K.D., Khorana, H.G., and Hubbell, W.L. (1995) Mapping Light-Dependent Structural Changes in the Cytoplasmic Loop Connecting Helices C and D in Rhodopsin: A Site-Directed Spin Labeling Study, Biochemistry 34, 8812–8819.

    Article  CAS  PubMed  Google Scholar 

  23. Litman, B.J., and Mitchell, D.C. (1996) Rhodopsin Structure and Function, in Biomembranes 2 (Lee, A.G., ed.) pp. 1–32, JAl Press, Greenwich, CT.

    Google Scholar 

  24. Miller, J.L., Fox, D.A., and Litman, B.J. (1986) Amplification of Phosphodiesterase Activation Is Greatly Reduced by Rhodopsin Phosphorylation, Biochemistry 25, 4983–4988.

    Article  CAS  PubMed  Google Scholar 

  25. Smith, H.G., Jr., Stubbs, G.W., and Litman, B.J. (1975) The Isolation and Purification of Osmotically Intact Discs from Retinal Rod Outer Segments, Exp. Eye Res. 20, 211–217.

    Article  PubMed  Google Scholar 

  26. Litman, B.J. (1982) Purification of Rhodopsin by Concanavalin A Affinity Chromatography, Methods Enzymol. 81, 150–153.

    CAS  PubMed  Google Scholar 

  27. Jackson, M.L., and Litman, B.J. (1985) Rhodopsin-Egg Phosphatidylcholine Reconstitution by an Octyl Glucoside Dilution Procedure, Biochim. Biophys. Acta 812, 369–376.

    Article  CAS  PubMed  Google Scholar 

  28. Miller, J.L., Litman, B.J., and Dratz, E.A. (1987) Binding and Activation of Rod Outer Segment Phosphodiesterase and Guanosine Triphosphate Binding Protein by Disc Membranes: Influence of Reassociation Method and Divalent Cations, Biochim. Biophys. Acta 898, 81–89.

    Article  CAS  PubMed  Google Scholar 

  29. Bartlett, G.R. (1959) Colorimetric Assay Methods for Free and Phosphorylated Glyceric Acids, J. Biol. Chem. 234, 469–471.

    CAS  PubMed  Google Scholar 

  30. Niu, S.L., Mitchell, D.C., and Litman, B.J. (2002) Manipulation of Cholesterol Levels in Rod Disk Membranes by Methyl-β-Cyclodextrin: Effects on Receptor Activation, J. Biol. Chem. 277, 20139–20145.

    Article  CAS  PubMed  Google Scholar 

  31. Straume, M., Mitchell, D.C., Miller, J.L., and Litman, B.J. (1990) Interconversion of Metarhodopsins I and II: A Branched Photointermediate Decay Model, Biochemistry 29, 9135–9142.

    Article  CAS  PubMed  Google Scholar 

  32. Mitchell, D.C., Niu, S.L., and Litman, B.J. (2001) Optimization of Receptor-G Protein Coupling by Bilayer Lipid Composition I: Kinetics of Rhodopsin-Transducin Binding, J. Biol. Chem. 276, 42801–42806.

    CAS  PubMed  Google Scholar 

  33. Yee, R., and Liebman, P. (1978) Light-Activated Phosphodiesterase of the Rod Outer Segment: Kinetics and Parameters of Activation and Deactivation, J. Biol. Chem. 253, 8902–8909.

    CAS  PubMed  Google Scholar 

  34. Mitchell, D.C. (1998) Effect of Cholesterol on Molecular Order and Dynamics in Highly Polyunsaturated Phospholipid Bilayers, Biophys. J. 75, 896–908.

    CAS  PubMed  Google Scholar 

  35. Mitchell, D.C. (1998) Molecular Order and Dynamics in Bilayers Consisting of Highly Polyunsaturated Phospholipids, Biophys J. 74, 879–891.

    CAS  PubMed  Google Scholar 

  36. Straume, M. (1987) Equilibrium and Dynamic structure of Large, Unilamellar, Unsaturated Acyl Chain Phosphatidylcholine Vesicles. Higher Order Analysis of 1,6-Diphenyl-1,3,5-hexatriene and 1-[4-(Trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene Anisotropy Decay, Biochemistry 26, 5113–5120.

    Article  CAS  PubMed  Google Scholar 

  37. Johnson, M.L., and Faunt, L.M. (1992) Parameter Estimation by Least-Squares Methods, Methods Enzymol. 210, 1–37.

    Article  CAS  PubMed  Google Scholar 

  38. Straume, M., and Litman, B.J. (1987) Influence of Cholesterol on Equilibrium and Dynamic Bilayer Structure of Unsaturated Acyl Chain Phosphatidylcholine Vesicles as Determined from Higher Order Analysis of Fluorescence Anisotropy Decay, Biochemistry 26, 5121–5126.

    Article  CAS  PubMed  Google Scholar 

  39. Mitchell, D.C., Straume, M., Miller, J.L., and Litman, B.J. (1990) Modulation of Metarhodopsin Formation by Cholesterol-Induced Ordering of Bilayer Lipids, Biochemistry 29, 9143–9149.

    Article  CAS  PubMed  Google Scholar 

  40. Litman, B.J., and Mitchell, D.C. (1996) A Role for Phospholipid Polyunsaturation in Modulating Membrane Protein Function, Lipids 31 (Suppl.), S193-S197.

    Article  CAS  PubMed  Google Scholar 

  41. Niu, S.L., Mitchell, D.C., and Litman, B.J. (2001) Optimization of Receptor-G Protein Coupling by Bilayer Lipid Composition II: Formation of Metarhodopsin II-Transducin Complex, J. Biol. Chem. 276, 42807–42811.

    Article  CAS  PubMed  Google Scholar 

  42. Nathans, J. (1992) Rhodopsin: Structure, Function, and Genetics, Biochemistry 31, 4923–4931.

    Article  CAS  PubMed  Google Scholar 

  43. Mitchell, D.C., and Litman, B.J. (1998) Effect of Cholesterol on Molecular Order and Dynamics in Highly Polyunsaturated Phospholipid Bilayers, Biophys. J. 75, 896–908.

    Article  CAS  PubMed  Google Scholar 

  44. Mitchell, D.C., Straume, M., and Litman, B.J. (1992) Role of sn-1-Saturated, sn-2-Polyunsaturated Phospholipids in Control of Membrane Receptor Conformational Equilibrium: Effects of Cholesterol and Acyl Chain Unsaturation on the Metarhodopsin I in Equilibrium with Metarhodopsin II Equilibrium, Biochemistry 31, 662–670.

    Article  CAS  PubMed  Google Scholar 

  45. Lamola, A.A., Yamane, T., and Zipp, A. (1974) Effects of Detergents and High Pressures Upon the Metarhodopsin I-Metarhodopsin II Equilibrium, Biochemistry 13, 738–745.

    Article  CAS  PubMed  Google Scholar 

  46. Hamm, H.E. (1998) The Many Faces of G Protein Signaling, J. Biol. Chem. 273, 669–672.

    Article  CAS  PubMed  Google Scholar 

  47. Neuringer, M., Connor, W.E., Lin, D.S., Barstad, L., and Luck, S. (1986) Biochemical and Functional Effects of Prenatal and Postnatal Omega-3 Fatty Acid Deficiency on Retina and Brain in Rhesus Monkeys, Proc. Natl. Acad. Sci. USA 83, 4021–4025.

    Article  CAS  PubMed  Google Scholar 

  48. Jeffrey, B.G., Mitchell, D.C., Gibson, R.A., and Neuringer, M. (2002) n−3 Fatty Acid Deficiency Alters Recovery of the Rod Photoresponse in Rhesus Monkeys, Investig. Ophthalmol. Vis. Sci. 43, 2806–2814.

    Google Scholar 

  49. Birch, D.G., Birch, E.E., Hoffman, D.R., and Uauy, R.D. (1992) Retinal Development in Very Low Birth Weight Infants Fed Diets Differing in Omega-3 Fatty Acids, Investig. Ophthalmol. Vis. Sci. 33, 2365–2376.

    CAS  Google Scholar 

  50. Leskov, I.B., Klenchin, V.A., Handy, J.W., Whitlock, G.G., Govardovskii, V.I., Bownds, M.D., Lamb, T.D., Pugh, E.N., and Arshavsky, V.Y. (2000) The Gain of Rod Phototransduction: Reconciliation of Biochemical and Electrophysiological Measurements, Neuron 27, 525–537.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burton J. Litman.

About this article

Cite this article

Mitchell, D.C., Niu, SL. & Litman, B.J. Enhancement of G protein-coupled signaling by DHA phospholipids. Lipids 38, 437–443 (2003). https://doi.org/10.1007/s11745-003-1081-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-003-1081-1

Keywords

Navigation