Skip to main content
Log in

Pricing strategies in inelastic energy markets: can we use less if we can’t extract more?

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Limited supply of nonrenewable energy resources under growing energy demand creates a situation when a marginal change in the quantity supplied or demanded causes non-marginal swings in price levels. The situation is worsened by the fact that we are currently running out of cheap energy resources at the global scale while adaptation to climate change requires extra energy costs. It is often argued that technology and alternative energy will be a solution. However, alternative energy infrastructure also requires additional energy investments, which can further increase the gap between energy demand and supply. This paper presents an explorative model that demonstrates that a smooth transition from an oil-based economy to alternative energy sources is possible only if it is started well in advance while fossil resources are still abundant. Later the transition looks much more dramatic and it becomes risky to rely entirely on technological solutions. It becomes increasingly likely that in addition to technological solutions that can increase supply we will need to find ways to decrease demand and consumption. We further argue that market mechanisms can be just as powerful tools to curb demand as they have traditionally been for stimulating consumption. We observe that individuals who consume more energy resources benefit at the expense of those who consume less, effectively imposing price externalities on the latters. We suggest two transparent and flexible methods of pricing that attempt to eliminate price externalities on energy resources. Such pricing schemes stimulate less consumption and can smooth the transition to renewable energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arthur W B (2006). Out-of-equilibrium economics and agent-based modeling. In: Tesfatsion L, Judd K L eds. Handbook of Computational Economics Volume 2: Agent-Based Computational Economics. Amsterdam: Elsevier B.V., 1551–1564

    Chapter  Google Scholar 

  • Ayres R U, Ayres LW, Warr B (2003). Exergy, power and work in the US economy, 1900–1998. Energy, 28(3): 219–273

    Article  Google Scholar 

  • Bartusch C, Wallin F, Odlare M, Vassileva I, Wester L (2011). Introducing a demand-based electricity distribution tariff in the residential sector: demand response and customer perception. Energy Policy, 39(9): 5008–5025

    Article  Google Scholar 

  • Bhattacharyya S C (1996). Domestic energy pricing policies in developing countries: why are economic prescriptions shelved? Energy Sources, 18(8): 855–874

    Article  Google Scholar 

  • Brock WA, Xepapadeas A (2004). Management of interacting species: regulation under nonlinearities and hysteresis. Resour Energy Econ, 26(2): 137–156

    Article  Google Scholar 

  • Brookshire D S, Burness H S, Chermak J M, Krause K (2002). Western urban water demand. Nat Resour J, 2(4): 873–898

    Google Scholar 

  • Cheshire P, Sheppard S (2005). The introduction of price signals into land use planning decision-making: a proposal. Urban Stud, 42(4): 647–663

    Article  Google Scholar 

  • Chow J, Kopp R J, Portney P R (2003). Energy resources and global development. Science, 302(5650): 1528–1531

    Article  Google Scholar 

  • Cleveland C J, Costanza R, Hall C A S, Kaufmann R (1984). Energy and the U.S. economy: a biophysical perspective. Science, 225(4665): 890–897

    Google Scholar 

  • Costanza R, Hart M, Posner S, Talberth J (2009). Beyond GDP: the need for new measures of progress. The Pardee Papers 4: 46

    Google Scholar 

  • Daly H, Farley J (2004). Ecological Economics.Washington D C: Island Press

    Google Scholar 

  • Day J W Jr, Hall C A, Yanez-Arancibia A, Pimentel D, Marti C I, Mitsch W J (2009). Ecology in times of scarcity. Bioscience, 59(4): 321–331

    Article  Google Scholar 

  • Diamond J (2005). Collapse: How Societies Choose to Fail or Succeed. New York: Penguin, 1–576

    Google Scholar 

  • Ehrlich P R, Ehrlich A H (2009). The Dominant Animal: Human Evolution and the Environment. Washington D C: Island press, 480 p

    Google Scholar 

  • Ehrlich P R, Ehrlich A H (2013). Can a collapse of global civilization be avoided? Proceedings of the Royal Society B: Biological Sciences, 280(1754). http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2012.2845

    Google Scholar 

  • EIA (2002). Annual Energy Review 2001. Energy Information Administration: DOE/EIA-0384, 432p

    Google Scholar 

  • EIA (2013). Annual Energy Outlook 2013. US DOE, 244p

    Google Scholar 

  • EIA (2013a). Short-term Energy Outlook. Release Date: August 6, 2013

    Google Scholar 

  • Energy Information Administration. http://www.eia.gov/forecasts/steo/index.cfm

  • Ekins O, Folke C, De Groot R (2003). Identifying critical natural capital. Ecol Econ, 44(2–3): 159–163

    Article  Google Scholar 

  • El-Ashry M (2010). Renewables 2010 Global Status Report. Paris: REN21 Secretariat. Copyright Deutsche (GTZ) GmbH

    Google Scholar 

  • Fader M, Gerten D, Krause M, Lucht W, Cramer W (2013). Spatial decoupling of agricultural production and consumption: quantifying dependences of countries on food imports due to domestic land and water constraints. Environmental Research Letters, 8(1): 014046. http://stacks.iop.org/1748-9326/8/i=1/a=014046?key=crossref.7dd1e79e39bbfb5d7423efaecb00e003

    Article  Google Scholar 

  • Farley J, Gaddis E (2007). An ecological economic assessment of restoration. In: Aronson J, Milton S, Blignaut J eds. Restoring Natural Capital: Science, Business and Practice. Washington DC: Island Press

    Google Scholar 

  • Firrisa M T, van Duren I, Voinov A (2013). Energy Efficiency for Rapeseed Biodiesel Production in Different Farming Systems. Energy Efficiency, 1–17. http://link.springer.com/10.1007/s12053-013-9201-2

    Google Scholar 

  • Gagnon L, Belanger C, Uchiyama Y (2002). Life-cycle assessment of electricity generation options: the status of research in year 2001. Energy Policy, 30(14): 1267–1278

    Article  Google Scholar 

  • Gever J (1986). Beyond Oil (3rd edition). New York: Harper Business

    Google Scholar 

  • Goldin K D (1975). Price externalities influence public-policy. Public Choice, 23(1): 1–10

    Article  Google Scholar 

  • Gowdy J, Roxana J (2005). Technology and Petroleum Exhaustion: Evidence from Two Mega-Oilfields. Rensselaer Working Papers in Economics

    Google Scholar 

  • Greene D L (1997). Oil dependence: the value of R&D. Proceedings of the Intersociety Energy Conversion Engineering Conference. Volume 3, 2148–2153

    Google Scholar 

  • Greene D L, Hopson J L, Li J (2004). Running out of and into oil: analyzing global oil depletion and transition through 2050. Energy and Environmental Concerns, 2004(1880): 1–9

    Google Scholar 

  • Gumilev L N (1990). Ethnogenesis and the Biosphere. Moscow: Progress Publishers

    Google Scholar 

  • Hall C A S, Cleveland C J, Kaufmann R (1986). Energy and Resource Quality: The Ecology of the Economic Process. New York: John Wiley and Sons

    Google Scholar 

  • Hall C A S, Day JW (2009). Revisiting the limits to growth after peak oil In the 1970s a rising world population and the finite resources available to support it were hot topics. Interest faded-but it’s time to take another look. Am Sci, 97(3): 230–237

    Google Scholar 

  • Höök M, Hirsch R, Aleklett K (2009). Giant oil field decline rates and their influence on world oil production. Energy Policy, 37(6): 2262–2272. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0301421509001281

    Article  Google Scholar 

  • Hubbert M K (1950). Energy from fossil fuels. Washington D C, American Association for the Advancement of Science Centennial: 171–177

    Google Scholar 

  • Hughes J D (2013). Energy: a reality check on the shale revolution. Nature, 494(7437): 307–8. http://www.ncbi.nlm.nih.gov/pubmed/23426309

    Article  Google Scholar 

  • IEA (2007). Medium-Term Oil Market Report. Eagles L ed, International Energy Agency: http://omrpublic.iea.org/currentissues/mtomr2007.pdf

  • IEA (2011). World Enegy Outlook. In IEA, 666

    Google Scholar 

  • Irastorza V (2005). New metering enables simplified and more efficient rate structures. Electr J, 18(10): 53–61

    Article  Google Scholar 

  • Kahl C H (2006). States, Scarcity, Civil Strife in the Developing World. Princeton, NJ and Oxford: Princeton University Press

    Google Scholar 

  • Kenney D S, Goemans C, Klein R, Lowrey J, Reidy K (2008). Residential water demand management: lessons from Aurora, Colorado. J Am Water Resour Assoc, 44(1): 192–207

    Article  Google Scholar 

  • Kerr R A (2008). Energy. World oil crunch looming? Science, 322(5905): 1178–1179

    Article  Google Scholar 

  • Krugman P R (1979). Increasing returns, monopolistic competition, and international-trade. J Int Econ, 9(4): 469–479

    Article  Google Scholar 

  • Kubiszewski I, Cleveland C J, Endres P K (2008). Energy return on investment (EROI) for wind energy. In: Cleveland C J ed. Encyclopedia of Earth. last updated June 18, 2008

    Google Scholar 

  • Levermann A, Clark P U, Marzeion B, Milne G A, Pollard D, Radic V, Robinson A (2013). The multimillennial sea-level commitment of global warming. Proceedings of the National Academy of Sciences (July 15): 1–6. http://www.pnas.org/cgi/doi/10.1073/pnas.1219414110

    Google Scholar 

  • Lipsey R G, Courant P N, Purvis D D, Steiner P O (1993). Microeconomics (10th Edition). New York: Harper Collins College Publishers Inc

    Google Scholar 

  • Loaiciga H A, Renehan S (1997). Municipal water use and water rates driven by severe drought: a case study. J AmWater Resour Assoc, 33(6): 1313–1326

    Article  Google Scholar 

  • Malthus T R (1826). An Essay on the Principle of Population. London: John Murray. Library of Economics and Liberty [Online] available from http://www.econlib.org/library/Malthus/malPlong1.html; accessed 18 May 2009

    Google Scholar 

  • Meinshausen M, Meinshausen N, Hare W, Raper S C B, Frieler K, Knutti R, Frame D J, Allen M R (2009). Greenhouse-gas Emission Targets for Limiting Global Warming to 2 °C. Nature, 458(7242): 1158–1162

    Article  Google Scholar 

  • Mulder K, Hagens N J (2008). Energy return on investment: toward a consistent framework. AMBIO: A Journal of the Human Environment, 37(2): 74–79

    Article  Google Scholar 

  • Munasinghe M, Meier P (1993). Energy Policy Analysis and Modeling. Cambridge: Cambridge University Press

    Book  Google Scholar 

  • Murphy D J, Hall C, Powers B (2010). New perspectives on the energy return on (energy) investment (EROI) of corn ethanol. Environment, Development and Sustainability, 13(1): 179–202. http://link.springer.com/10.1007/s10668-010-9255-7

    Article  Google Scholar 

  • Murray J, King D (2012). Climate policy: oil’s tipping point has passed. Nature, 481(7382): 433–435

    Article  Google Scholar 

  • Pachauri R K, Reisinger A (2007). Climate Change 2007: Synthesis Report. Geneva, Switzerland, IPCC

    Google Scholar 

  • Rees W E, Wackernagel M, Testemale P (1998). Our Ecological Footprint: Reducing Human Impact on the Earth. Gabriola Island: New Society Publishers

    Google Scholar 

  • Simon J L (1998). The Ultimate Resource II. Princeton: Princeton University Press

    Google Scholar 

  • Solomon S, Plattner G K, Knutti R, Friedlingstein P (2009). Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci USA, 106(6): 1704–1709

    Article  Google Scholar 

  • Stern N (2008). The Economics of Climate Change: The Stern Review. Cambridge: Cambridge University Press

    Google Scholar 

  • Trewavas A (2002). Malthus foiled again and again. Nature, 418(6898): 668–670

    Article  Google Scholar 

  • Voinov A (2008). Systems Science and Modeling for Ecological Economics. Elsevier, Academic Press

    Google Scholar 

  • Whitcomb J B. (2005). Florida water rates evaluation of single-family homes. Report to South Florida Water Management District: 113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Voinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voinov, A., Filatova, T. Pricing strategies in inelastic energy markets: can we use less if we can’t extract more?. Front. Earth Sci. 8, 3–17 (2014). https://doi.org/10.1007/s11707-013-0410-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-013-0410-y

Keywords

Navigation