Skip to main content

Advertisement

Log in

Differences in Growth Generate the Diverse Palate Shapes of New World Leaf-Nosed Bats (Order Chiroptera, Family Phyllostomidae)

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

New World leaf-nosed bats (Family Phyllostomidae) display incredible craniofacial diversity that is associated with their broad range of dietary preferences. The short and broad palates of highly frugivorous bats are functionally linked to high bite forces, and the long and narrow palates of nectarivorous bats to flower feeding. Although the functional correlates and evolutionary history of shape variation in phyllostomid palates are beginning to be understood, the specific developmental processes that govern palate diversification remain unknown. To begin to resolve this issue, this study quantified palate morphology in seven phyllostomid species from a range of developmental stages and in adults. This sample includes species with short and broad, long and narrow, and intermediate palate shapes, and thereby covers the range of palate shapes displayed by phyllostomids. Results indicate that while initial palate shape (i.e., width vs. length) varies among species, the pattern of this variation does not match that observed in adults. In contrast, the relative growth of palate width and length in developing phyllostomids and the ratio of these axes in adults are significantly correlated. These and other results suggest that evolutionary alterations in patterns of palate growth have governed the diversification of palate shapes in adult phyllostomids. This implies that the diverse palate shapes of phyllostomids are the result of relatively subtle evolutionary changes in later rather than earlier development events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abzhanov, A., Kuo, W. P., Hartman, C. G., Grant, B. R., Grant, P. R., & Tabin, C. J. (2006). The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches. Nature, 442(7102), 563–567.

    Article  CAS  PubMed  Google Scholar 

  • Abzhanov, A., Protas, M., Grant, B. R., Grant, P. R., & Tabin, C. J. (2004). Bmp4 and morphological variation of beaks in Darwin’s finches. Science, 305, 1462–1465.

    Article  CAS  PubMed  Google Scholar 

  • Albertson, R. C., Streelman, J. T., Kocher, T. D., & Yelick, P. C. (2005). Integration and evolution of the cichlid mandible: The molecular basis of alternate feeding strategies. Proceedings of the National Academy of Sciences of the United States of America 102(45):16287–92.

  • Albertson, R. C., Yan, Y. L., Titus, T. A., Pisano, E., Vacchi, M., Yelick, P. C., et al. (2010). Molecular pedomorphism underlies craniofacial skeletal evolution in Antarctic notothenioid fishes. BMC Evolutionary Biology, 10, 4.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bininda-Emonds, O. R. P., Jeffery, J. E., & Richardson, M. K. (2003). Inverting the hourglass: Quantitative evidence against the phylotypic stage in vertebrate development. Proceedings of the Royal Society B, 270, 341–346.

    Article  PubMed  Google Scholar 

  • Cheverud, J. M. (1982). Relationships among ontogenetic, static, and evolutionary allometry. American Journal of Physical Anthropology, 59(2), 139–149.

    Article  CAS  PubMed  Google Scholar 

  • Cretekos, C. J., Weatherbee, S. D., Chen, C. H., Badwaik, N. K., Niswander, L., Behringer, R. R., et al. (2005). Embryonic staging system for the short-tailed fruit bat, Carollia perspicillata, a model organism for the mammalian order Chiroptera, based upon timed pregnancies in captive-bred animals. Developmental Dynamics, 233, 721–738.

    Article  PubMed  Google Scholar 

  • Damuth, J., & MacFadden, B. J. (1990). Body Size in mammalian paleobiology (p. 409). New York: Cambridge University Press.

    Google Scholar 

  • Domazet-Loso, T., & Tautz, D. (2010). A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature, 468(7325), 815–818.

    Article  CAS  PubMed  Google Scholar 

  • Drake, A. G., & Klingenberg, C. P. (2008). The pace of morphological change: Historical transformation of skull shape in St Bernard dogs. Proceedings of Biological Sciences, 275(1630), 71–76.

    Article  Google Scholar 

  • Dumont, E. R. (1997). Cranial shape in fruit, nectar and exudate feeders. American Journal of Physical Anthropology, 102, 187–202.

    Article  CAS  PubMed  Google Scholar 

  • Dumont, E. R. (1999). The effect of food hardness on feeding behaviour in frugivorous bats (Phyllostomidae): An experimental study. Journal of Zoology, 248, 219–229.

    Article  Google Scholar 

  • Dumont, E. R. (2004). Patterns of diversity in cranial shape among plant-visiting bats. Acta Chiropterol, 6(1), 59–74.

    Article  Google Scholar 

  • Dumont, E. R. (2006). The correlated evolution of cranial morphology and feeding behavior in new world fruit bats. In A. Zubaid, G. F. McCracken, & T. H. Kunz (Eds.), Functional and evolutionary ecology of bats (pp. 160–177). Chicago: University of Chicago Press.

    Google Scholar 

  • Dumont, E. R. (2007). Feeding mechanisms in bats: Variation within the constraints of flight. Integrative and Comparative Biology, 47(1), 137–146.

    Article  PubMed  Google Scholar 

  • Dumont, E. R., Davalos, L. M., Goldberg, A., Santana, S. E., Rex, K., & Voigt, C. C. (2012). Morphological innovation, diversification and invasion of a new adaptive zone. Proceedings of Biological Sciences, 279(1734), 1797–1805.

    Article  Google Scholar 

  • Ferrarezzi, H., & Gimenez, E. D. A. (1996). Systematic patterns and the evolution of feeding habits in Chiroptera (Archonta: Mammalia). Journal of Computational Biology, 1, 75–94.

    Google Scholar 

  • Freeman, P. W. (1988). Frugivorous and animalivorous bats (Microchiroptera): Dental and cranial adaptations. Biological Journal of the Linnean Society, 33, 249–272.

    Article  Google Scholar 

  • Freeman, P. W. (1998). Form, function, and evolution in skulls and teeth of bats. In T. H. Kunz & P. A. Racey (Eds.), Bat biology and conservation (pp. 140–156). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Galis, F., & Metz, J. A. J. (2001). Testing the vulnerability of the phylotypic stage: On modularity and evolutionary conservation. Journal of Experimental Zoology Part B, 291, 195–204.

    Article  CAS  Google Scholar 

  • Galis, F., van Alphen, J. J. M., & Metz, J. A. J. (2001). Why five fingers? Evolutionary constraints on digit numbers. Trends in Ecology & Evolution, 16(11), 637–646.

    Article  Google Scholar 

  • Gardner, A. L. (1977). Feeding habits. In R. J. Baker, J. K. Jones, & D. C. Carter (Eds.), Biology of bats of the new world family Phyllostomidae, part 2 (pp. 293–350). Lubbock: Texas Tech Press.

    Google Scholar 

  • Garfield, D. A., & Wray, G. A. (2009). Comparative embryology without a microscope: Using genomic approaches to understand the evolution of development. Journal of Biology, 8, 65.

    Article  PubMed Central  PubMed  Google Scholar 

  • Goswami, A. (2006). Morphological integration in the carnivoran skull. Evolution, 60(1), 169–183.

    PubMed  Google Scholar 

  • Grant, P. R., & Grant, B. R. (2006). Evolution of character displacement in Darwin’s finches. Science, 313(5784), 224–226.

    Article  CAS  PubMed  Google Scholar 

  • Harris, M. P. (2012). Comparative genetics of postembryonic development as a means to understand evolutionary change. Journal of Applied Ichthyology, 28(3), 306–315.

    Article  Google Scholar 

  • Howell, D. J., & Hodgkin, N. (1976). Feeding adaptations in the hairs and tongues of nectar-feeding bats. Journal of Morphology, 148, 329–336.

    Article  CAS  PubMed  Google Scholar 

  • Kalinka, A. T., Varga, K. M., Gerrard, D. T., Preibisch, S., Corcoran, D. L., Jarrells, J., et al. (2010). Gene expression divergence recapitulates the developmental hourglass model. Nature, 468(7325), 811–814.

    Article  CAS  PubMed  Google Scholar 

  • Klingenberg, C. K. (1998). Heterochrony and allometry: The analysis of evolutionary change in ontogeny. Biological Reviews, 73, 79–123.

    Article  CAS  PubMed  Google Scholar 

  • Klingenberg, C. P. (2008). Morphological integration and developmental modularity. Annual Review of Ecology Evolution and Systematics, 39, 115–132.

    Article  Google Scholar 

  • Klingenberg, C. P. (2010). There’s something afoot in the evolution of ontogenies. BMC Evolutionary Biology, 10, 221.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mallarino, R., Grant, P. R., Grant, B. R., Herrel, A., Kuo, W. P., & Abzhanov, A. (2011). Two developmental modules establish 3D beak-shape variation in Darwin’s finches. Proceedings of the National Academy of Sciences of the United States of America, 108(10), 4057–4062.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Myers, P., Espinoza, R., Parr, S., Jones, T., Hammond, G. S., & Dewey, T. A. (2013). The animal diversity web (online). Accessed at http://animaldiversity.org.

  • Parsons, K. J., Cooper, W. J., & Albertson, R. C. (2011). Modularity of the oral jaws is linked to repeated changes in the craniofacial shape of African cichlids. International Journal of Evolutionary Biology, 2011, 641501.

    Article  PubMed Central  PubMed  Google Scholar 

  • Raff, R. A. (1996). The shape of life: Genes, development, and the evolution of animal form. Chicago: University of Chicago Press.

    Google Scholar 

  • Richardson, M. K. (1999). Vertebrate evolution: The developmental origins of adult variation. BioEssays, 21, 604–613.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, R. B., Hu, Y., Albertson, R. C., & Kocher, T. D. (2011). Craniofacial divergence and ongoing adaptation via the hedgehog pathway. Proceedings of the National Academy of Sciences of the United States of America, 108(32), 13194–13199.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roux, J., & Robinson-Rechavi, M. (2008). Developmental constraints on vertebrate genome evolution. PLoS Genetics, 4(12), 1–10.

    Article  Google Scholar 

  • Sanger, T. J., Mahler, D. L., Abzhanov, A., & Losos, J. B. (2012). Roles for modularity and constraint in the evolution of cranial diversity among anolis lizards. Evolution, 66(5), 1525–1542.

    Article  PubMed  Google Scholar 

  • Santana, S. E., Dumont, E. R., & Davis, J. L. (2010). Mechanics of bite force production and its relationship to diet in bats. Functional Ecology, 24(4), 776–784.

    Article  Google Scholar 

  • Santana, S. E., Grosse, I. R., & Dumont, E. R. (2012). Dietary hardness, loading behavior, and the evolution of skull form in bats. Evolution, 66(8), 2587–2598.

    Article  PubMed  Google Scholar 

  • Schluter, D., Price, T. D., & Grant, P. R. (1985). Ecological character displacement in Darwin’s finches. Science, 227(4690), 1056–1059.

    Article  CAS  PubMed  Google Scholar 

  • Sears, K. E., Finarelli, J. A., Flynn, J. J., & Wyss, A. (2008). Morphometric estimators of body mass in new world monkeys (Platyrrhini, Anthropoidea, Primates), with consideration of the miocene-aged Chilecebus carrascoensis. American Museum Novitiates, 3617, 1–29.

    Article  Google Scholar 

  • Sears, K. E., Goswami, A., Flynn, J. J., & Niswander, L. A. (2007). The correlated evolution of Runx2 tandem repeats, transcriptional activity, and facial length in carnivora. Evolution and Development, 9(6), 555–565.

    Article  CAS  PubMed  Google Scholar 

  • Simmons, N. B. (2005). Order Chiroptera. In D. E. Wilson & D. M. Reeder (Eds.), Mammal species of the world: A taxonomic and geographic reference (pp. 313–529). Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1995). Biometry (p. 880). New York: W.H. Freeman and Company.

    Google Scholar 

  • Sorensen, D. W., Butkus, C., & Cooper, L. N. (in review). The role of development in palate variation in leaf-nosed bats (Order Chiroptera, Family Phyllostomidae).

  • Weston, E. M. (2003). Evolution of ontogeny in the hippopotamus skull: Using allometry to dissect developmental change. Biological Journal of the Linnean Society, 80, 625–638.

    Article  Google Scholar 

  • Wilmore, K. E., Leamy, L. J., & Hallgrimsson, B. (2006). Effects of developmental and functional interactions on mouse cranial variability through late ontogeny. Evol Dev, 8(6), 550–567.

    Article  Google Scholar 

  • Wu, P., Jiang, T. X., Shen, J. Y., Widelitz, R. B., & Chuong, C. M. (2006). Morphoregulation of avian beaks: Comparative mapping of growth zone activities and morphological evolution. Developmental Dynamics, 235(5), 1400–1412.

    Article  PubMed  Google Scholar 

  • Wu, P., Jiang, T. X., Suksaweang, S., Widelitz, R. B., & Chuong, C. M. (2004). Molecular shaping of the beak. Science, 305(5689), 1465–1466.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank B. Stanley and the rest of the staff of the mammals collection at the Field Museum of Natural History for providing access to the cleared and stained bat specimens that are the foundation of this study, and to Drs. J. Marcot, B. Dumont, and S. Swartz for discussion of ideas. NIH NRSA F32 HD050042-01 and NSF IOS-1257873 supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen E. Sears.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sears, K.E. Differences in Growth Generate the Diverse Palate Shapes of New World Leaf-Nosed Bats (Order Chiroptera, Family Phyllostomidae). Evol Biol 41, 12–21 (2014). https://doi.org/10.1007/s11692-013-9241-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-013-9241-8

Keywords

Navigation