Skip to main content
Log in

Suspension High Velocity Oxy-Fuel (SHVOF)-Sprayed Alumina Coatings: Microstructure, Nanoindentation and Wear

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Suspension high velocity oxy-fuel spraying can be used to produce thermally sprayed coatings from powdered feedstocks too small to be processed by mechanical feeders, allowing formation of nanostructured coatings with improved density and mechanical properties. Here, alumina coatings were produced from submicron-sized feedstock in aqueous suspension, using two flame combustion parameters yielding contrasting microstructures. Both coatings were tested in dry sliding wear conditions with an alumina counterbody. The coating processed with high combustion power of 101 kW contained 74 wt.% amorphous phase and 26 wt.% crystalline phase (95 wt.% gamma and 3 wt.% alpha alumina), while the 72-kW coating contained lower 58 wt.% amorphous phase and 42 wt.% crystalline phases (73 wt.% was alpha and 26 wt.% gamma). The 101-kW coating had a dry sliding specific wear rate between 4 and 4.5 × 10−5 mm3/Nm, 2 orders of magnitude higher than the 72-kW coating wear rate of 2-4.2 × 10−7 mm3/Nm. A severe wear regime dominated by brittle fracture and grain pullout of the coating was responsible for the wear of the 101-kW coating, explained by mean fracture toughness three times lower than the 72-kW coating, owing to the almost complete absence of alpha alumina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Killinger, M. Kuhn, and R. Gadow, High-Velocity Suspension Flame Spraying (HVSFS), a New Approach for Spraying Nanoparticles with Hypersonic Speed, Surf. Coat. Technol., 2006, 201(5), p 1922-1929

    Article  Google Scholar 

  2. F.-L. Toma, L.-M. Berger, C.C. Stahr, T. Naumann, and S. Langner, Microstructures and Functional Properties of Suspension-Sprayed Al2O3 and TiO2 Coatings: An Overview, J. Therm. Spray Technol., 2010, 19(1), p 262-274

    Article  Google Scholar 

  3. L. Pawlowski, Thermal Spraying Techniques, the Science and Engineering of Thermal Spray Coatingsed, Wiley, London, 2008, p 67-113

    Book  Google Scholar 

  4. G. Bolelli, J. Rauch, V. Cannillo, A. Killinger, L. Lusvarghi, and R. Gadow, Microstructural and Tribological Investigation of High-Velocity Suspension Flame Sprayed (HVSFS) Al2O3 Coatings, J. Therm. Spray Technol., 2008, 18(1), p 35-49

    Article  Google Scholar 

  5. R. McPherson, Formation of Metastable Phases in Flame- and Plasma-Prepared Alumina, J. Mater. Sci., 1973, 8(6), p 851-858

    Article  Google Scholar 

  6. P. Fauchais, G. Montavon, and G. Bertrand, From Powders to Thermally Sprayed Coatings, J. Therm. Spray Technol., 2010, 19(1), p 56-80

    Article  Google Scholar 

  7. R. McPherson, On the Formation of Thermally Sprayed Alumina Coatings, J. Mater. Sci., 1980, 15(12), p 3141-3149

    Article  Google Scholar 

  8. P. Chráska, J. Dubsky, K. Neufuss, and J. Písacka, Alumina-Base Plasma-Sprayed Materials Part I: Phase Stability of Alumina and Alumina-Chromia, J. Therm. Spray Technol., 1997, 6(3), p 320-326

    Article  Google Scholar 

  9. J. Ilavsky, C.C. Berndt, H. Herman, P. Chraska, and J. Dubsky, Alumina-Base Plasma-Sprayed Materials—Part II: Phase Transformations in Aluminas, J. Therm. Spray Technol., 1997, 6(4), p 439-444

    Article  Google Scholar 

  10. F.-L. Toma, L.-M. Berger, S. Scheitz, S. Langner, C. Rödel, A. Potthoff, V. Sauchuk, and M. Kusnezoff, Comparison of the Microstructural Characteristics and Electrical Properties of Thermally Sprayed Al2O3 Coatings from Aqueous Suspensions and Feedstock Powders, J. Therm. Spray Technol., 2012, 21(3), p 480-488

    Article  Google Scholar 

  11. J. Rauch, G. Bolelli, A. Killinger, R. Gadow, V. Cannillo, and L. Lusvarghi, Advances in High Velocity Suspension Flame Spraying (HVSFS), Surf. Coat. Technol., 2009, 203(15), p 2131-2138

    Article  Google Scholar 

  12. H. Rietveld, Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement, Acta Crystallogr. A, 1967, 22(1), p 151-152

    Article  Google Scholar 

  13. J. Suffner, H. Sieger, H. Hahn, S. Dosta, I.G. Cano, J.M. Guilemany, P. Klimczyk, and L. Jaworska, Microstructure and Mechanical Properties of Near-Eutectic ZrO2–60 wt% Al2O3 Produced by Quenched Plasma Spraying, Mater. Sci. Eng., A, 2009, 506(1-2), p 180-186

    Article  Google Scholar 

  14. R.S. Zhou and R.L. Snyder, Structures and Transformation Mechanisms of the η, γ and θ Transition Aluminas, Acta Crystallogr. Sect. B, 1991, 47(5), p 617-630

    Article  Google Scholar 

  15. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(06), p 1564-1583

    Article  Google Scholar 

  16. A.G. Evans and E.A. Charles, Fracture Toughness Determinations by Indentation, J. Am. Ceram. Soc., 1976, 59(7-8), p 371-372

    Article  Google Scholar 

  17. B. Yazdani, F. Xu, I. Ahmad, X. Hou, Y. Xia, and Y. Zhu, Tribological Performance of Graphene/Carbon Nanotube Hybrid Reinforced Al2O3 Composites, Sci. Rep., 2015, 5, p 11579

    Article  Google Scholar 

  18. T. Hussain, E.C. Shaw, Z. Pala, F. Xu, A.S.M. Ang, Tribology and Nanoindentation Study of Suspension HVOF Thermally Sprayed Alumina Coating, International Thermal Spray Conference & Exposition, May 10-12, 2016 (Shanghai, China)

  19. J. Gangwar, K. Dey, P. Komal, S. Tripathi, and A. Srivastava, Microstructure, Phase Formations and Optical Bands in Nanostructured Alumina, Adv. Mater. Lett., 2011, 2, p 402-408

    Article  Google Scholar 

  20. I.M. Hutchings, Tribology: Friction and Wear of Engineering Materials, Edward Arnold, London, 1992

    Google Scholar 

  21. Y. Jin and Y. Yang, Tribological Behavior of Various Plasma-Sprayed Ceramic Coatings, Surf. Coat. Technol., 1997, 88(1), p 248-254

    Article  Google Scholar 

  22. B. Bhushan, Introduction to Tribology, Wiley, New York, 2002

    Google Scholar 

  23. G. Bolelli, V. Cannillo, L. Lusvarghi, and T. Manfredini, Wear Behaviour of Thermally Sprayed Ceramic Oxide Coatings, Wear, 2006, 261(11-12), p 1298-1315

    Article  Google Scholar 

  24. R. Singha Roy, A. Mondal, A. Chanda, D. Basu, and M.K. Mitra, Sliding Wear Behavior of Submicron-Grained Alumina in Biological Environment, J. Biomed. Mater. Res., Part A, 2007, 83A(2), p 257-262

    Article  Google Scholar 

  25. H. Ishigaki, I. Kawaguchi, M. Iwasa, and Y. Toibana, Friction and Wear of Hot Pressed Silicon Nitride and Other Ceramics, J. Tribol., 1986, 108(4), p 514-521

    Article  Google Scholar 

  26. P. Nayar, A. Khanna, D. Kabiraj, S.R. Abhilash, B.D. Beake, Y. Losset, and B. Chen, Structural, Optical and Mechanical Properties of Amorphous and Crystalline Alumina Thin Films, Thin Solid Films, 2014, 568, p 19-24

    Article  Google Scholar 

  27. Q. Li, Y.-H. Yu, C. Singh Bhatia, L.D. Marks, S.C. Lee, and Y.W. Chung, Low-Temperature Magnetron Sputter-Deposition, Hardness, and Electrical Resistivity of Amorphous and Crystalline Alumina Thin Films, J. Vac. Sci. Technol., A, 2000, 18(5), p 2333-2338

    Article  Google Scholar 

  28. P.M. Martin, Thin Film Tribological Materials. Introduction to Surface Engineering and Functionally Engineered Materials, Wiley, New York, 2011, p 187-282

    Book  Google Scholar 

  29. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Wiley, New York, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hussain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, J.W., Ang, A.S.M., Pala, Z. et al. Suspension High Velocity Oxy-Fuel (SHVOF)-Sprayed Alumina Coatings: Microstructure, Nanoindentation and Wear. J Therm Spray Tech 25, 1700–1710 (2016). https://doi.org/10.1007/s11666-016-0462-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0462-0

Keywords

Navigation