Skip to main content
Log in

Tin Coatings Electrodeposited from Sulfonic Acid-Based Electrolytes: Tribological Behavior

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A high efficiency methane sulfonic acid electrolyte used for tin electrodeposition was studied, and the properties of the resulting deposits were compared to those of tin coatings obtained from an industrial phenol sulfonic acid electrolyte. Cyclic voltammetry was used to study the effect of organic additives on the reduction process to define the composition of the electrolytic bath. Thick tin electrodeposits were obtained on rotating cylinder steel electrodes, and their surface morphology, preferred crystal orientation, surface roughness, micro hardness, and tribological behavior were measured. Smooth, adherent, and bright tin coatings were obtained from the methane sulfonic acid electrolyte, which differed in morphology and texture from tin electrodeposited from the industrial bath. Influence of organic additives on preferred crystal orientation of the coatings was found to be stronger than changing the supporting sulfonic acid type. Tribological tests showed that the two types of deposits have a similar coefficient of friction. However, tin coatings obtained from methane sulfonic electrolytes presented a lower wear resistance and underwent galling at lower loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Winand, Electrocrystallization—Theory and Applications, Hydrometallurgy, 1992, 29, p 567–598

    Article  Google Scholar 

  2. M.E. Browning, Plating and Electroplating, Surface Engineering. ASM International, New York, 1994, p 239–242

    Google Scholar 

  3. M. Schlesinger and M. Paunovic, Modern Electroplating, 5th ed., Willey, New Jersey, 2010

    Book  Google Scholar 

  4. T.P. Murphy and H. Smith, Changes in Tinplate Surfaces During DWI Can Manufacture, in 3rd International Tinplate Conference, Conference Date (London), 1984, p 299–309

  5. D. Thomson, D.A. Luke, and C. Mosher, Reducing Tin Sludge in Acid Tin Plating, 1995, US 5,378,347

  6. A. Survila, Z. Mockus, and R. Juškėnas, Current Oscillations Observed During Codeposition of Copper and Tin from Sulfate Solutions Containing Laprol 2402C, Electrochim. Acta, 1998, 43(8), p 909–917

    Article  Google Scholar 

  7. G.I. Medvedev, N.A. Makrushin, and O.V. Ivanova, Electrodeposition of Copper-Tin Alloy from Sulfate Electrolyte, Russ. J. Appl. Chem., 2004, 77(7), p 1104–1107

    Article  Google Scholar 

  8. E. Ilgar, Electrolytic Tin Plating Process with Reduced Sludge Production, 1998, US 5,814,202

  9. E. Morgan, Tinplate Manufacture, Tinplate & Modern Canmaking Technology (Chap. 2), E. Morgan, Ed., Pergamon, Oxford, 1985, p 5–73

    Chapter  Google Scholar 

  10. A. Sharma, S. Bhattacharya, R. Sen, B.S.B. Reddy, H.J. Fecht, K. Das, and S. Das, Influence of Current Density on Microstructure of Pulse Electrodeposited Tin Coatings, Mater. Charact., 2012, 68, p 22–32

    Article  Google Scholar 

  11. U. Sahaym, S.L. Miller, and M.G. Norton, Effect of Plating Temperature on Sn Surface Morphology, Mater. Lett., 2010, 64(14), p 1547–1550

    Article  Google Scholar 

  12. G.-S. Tzeng, Effects of Additive Agents on the Kinetics of Tin Electrodeposition from an Acidic Solution of Tin(II) Sulfate, Plat. Surf. Finish., 1995, 82, p 67–71

    Google Scholar 

  13. F. Bottos, B. Alavanjo, M. Steel, G. Federman, and J. Swanson, Commercial Production of Tinplate with an MSA Process on a Horizontal Cell Tinplate Line at National Steel’s Midwest Division, 6th International Tinplate Conference, Conference Date (London), 1996, p 38–59

  14. G. Federman, An Improved High Speed MSA Tinplate Process: Laboratory Testing to Production Experience, 7th International Tinplate Conference, Conference Date (Amsterdam), 2000

  15. C. Rosenstein, Methane Sulfonic Acid as an Electrolyte for Tin, Lead and Tin-Lead Plating for Electronics, Metal Finish., 1990, 88, p 17–21

    Google Scholar 

  16. Y.-H. Yau, The Effect of Process Variables on Electrotinning in a Methanesulfonic Acid Bath, J. Electrochem. Soc., 2000, 147(3), p 1071–1076

    Article  Google Scholar 

  17. N.M. Martyak and R. Seefeldt, Additive-Effects During Plating in Acid Tin Methanesulfonate Electrolytes, Electrochim. Acta, 2004, 49, p 4303–4311

    Article  Google Scholar 

  18. C.T.J. Low and F.C. Walsh, The Influence of a Perfluorinated Cationic Surfactant on the Electrodeposition of Tin from a Methanesulfonic Acid Bath, J. Electroanal. Chem., 2008, 615, p 91–102

    Article  Google Scholar 

  19. W. Zhang, J. Guebey, and M. Toben, A novel Electrolyte for the high Speed Electrodeposition of Bright Pure Tin at Elevated Temperatures, Metal Finish., 2011, 109(1-2), p 13–19

    Article  Google Scholar 

  20. F.I. Nobel, B.D. Ostrow, and D.N. Schram, Tin-Lead Electroplating Solutions, 1988, US 4,717,460

  21. F.I. Nobel, B.D. Ostrow, and D.N. Schram, Bath and Process for Plating Tin, Lead and Tin-Lead Alloys, 1986, US 4,565,609

  22. K. Obata, N. Dohi, Y. Okuhama, S. Masaki, Y. Okada, and M. Yoshimoto, Tin, Lead, and Tin-Lead Alloy Plating Baths, 1984, US 4,459,185

  23. C. Xu, Y. Zhang, C. Fan, P. Chiu, and J.A. Abys, Surface morphology, appearance and tribology of electrodeposited tin films, Plat. Surf. Finish., 2000, 87(9), p 88–92

    Google Scholar 

  24. C. Xu, Y. Zhang, P. Chiu, and J.A. Abys, Glossiness, Morphology and Microstructure of Electrodeposited Sn Films, Surface Finishing, Conference Date, 1999

  25. C.H. O’driscoll, Tin Plating Electrolyte Compositions, 2001, European Patent EP0857226 B1

  26. C.T.J. Low, F.C. Walsh, and C. Ponce de Leon, The Rotating Cylinder Electrode (RCE) and its Applications to the Electrodeposition of Metals, Aust. J. Chem., 2005, 58, p 246–262

    Article  Google Scholar 

  27. D.R. Gabe, G.D. Wilcox, J. Gonzalez-Garcia, and F.C. Walsh, The Rotating Cylinder Electrode: Its Continued Development and Application, J. Appl. Electrochem., 1998, 28(8), p 759–780

    Article  Google Scholar 

  28. L.N. Bengoa, W.R. Tuckart, N. Zabala, G. Prieto, and W.A. Egli, Bronze Electrodeposition from an Acidic Non-cyanide High Efficiency Electrolyte: Tribological Behavior, Surf. Coat. Technol., 2014, 253, p 241–248

    Article  Google Scholar 

  29. Y.-F. Tu, X.-H. Chao, J.-P. Sang, S.-Y. Huang, and X.-W. Zou, Thin-Layer Electrodeposition of Zn in the Agar Gel Medium, Phys. A, 2008, 387(16-17), p 4007–4014

    Article  Google Scholar 

  30. L.P. Bérubé and G. L’Espérance, A Quantitative Method of Determining the Degree of Texture of Zinc Electrodeposits, J. Electrochem. Soc., 1989, 136(8), p 2314–2315

    Article  Google Scholar 

  31. JCPDS-ICDD, Powder Diffraction Files Sn 04-0673, International Center for Diffraction Data, Newtown Square, 1997

  32. S. Wen and J.A. Szpunar, Nucleation and Growth of Tin on Low Carbon Steel, Electrochim. Acta, 2005, 50(12), p 2393–2399

    Article  Google Scholar 

  33. G. Gunawardena, G. Hills, and I. Montenegro, Electrochemical Nucleation: Part V. Electrodeposition of Cadmium Onto Vitreous Carbon and Tin Oxide Electrodes, J. Electroanal. Chem., 1985, 184(2), p 371–389

    Article  Google Scholar 

  34. M. Moharana and A. Mallik, Nickel Electrocrystallization in Different Electrolytes: An In-Process and Post Synthesis Analysis, Electrochim. Acta, 2013, 98, p 1–10

    Article  Google Scholar 

  35. J. Torrent-Burgués, E. Guaus, and F. Sanz, Initial Stages of Tin Electrodeposition from Sulfate Baths in the Presence of Gluconate, J. Appl. Electrochem., 2002, 32(2), p 225–230

    Article  Google Scholar 

  36. E. Gómez, E. Guaus, F. Sanz, and E. Vallés, Tin Electrodeposition on Carbon Electrodes. From Nuclei to Microcrystallites, J. Electroanal. Chem., 1999, 465(1), p 63–71

    Article  Google Scholar 

  37. K.I. Popov, N.V. Krstajić, and M.I. Čekerevac, The Mechanism of Formation of Coarse and Disperse Electrodeposits, Modern Aspects of Electrochemistry, R.E. White, B.E. Conway, and J.O.M. Bockris, Ed., Plenum, New York, 1996, p 261–312

    Google Scholar 

  38. K.I. Popov and N.D. Nikolic, General Theory of Disperse Metal Electrodeposits Formation, Electrochemical Production of Metal Powders, S.S. Djokić, Ed., Springer, New York, 2012, p 1–62

    Chapter  Google Scholar 

  39. G.I. Medvedev, N.A. Makrushin, and A.N. Dubenkov, Organic Compounds for Preparing Lustrous Tin Coatings, Russ. J. Appl. Chem., 2002, 75(11), p 1799–1803

    Article  Google Scholar 

  40. G.I. Medvedev and N.A. Makrushin, A Study of the Kinetics of Tin Electrodeposition from Sulfate Electrolyte with Organic Additives, Russ. J. Appl. Chem., 2002, 75(8), p 1234–1236

    Article  Google Scholar 

  41. F.J. Barry and V.J. Cunnane, Synergistic Effects of Organic Additives on the Discharge, Nucleation and Growth Mechanisms of Tin at Polycrystalline Copper Electrodes, J. Electroanal. Chem., 2002, 537, p 151–163

    Article  Google Scholar 

  42. R. Sekar, C. Eagammai, and S. Jayakrishnan, Effect of Additives on Electrodeposition of Tin and Its Structural and Corrosion Behaviour, J. Appl. Electrochem., 2010, 40(1), p 49–57

    Article  Google Scholar 

  43. X. Guo, G. Zhang, W. Li, Y. Gao, H. Liao, and C. Coddet, Investigation of the Microstructure and Tribological Behavior of Cold-Sprayed Tin-Bronze-Based Composite Coatings, Appl. Surf. Sci., 2009, 255(6), p 3822–3828

    Article  Google Scholar 

  44. X. Guo, G. Zhang, W. Li, L. Dembiski, Y. Gao, H. Liao, and C. Coddet, Microstructure, Microhardness and Dry Friction Behavior of Cold-Sprayed Tin Bronze Coatings, Appl. Surf. Sci., 2007, 254(5), p 1482–1488

    Article  Google Scholar 

  45. K. Holmberg, A. Matthews, and H. Ronkainen, Coatings Tribology—Contact Mechanisms and Surface Design, Tribol. Int., 1998, 31(1-3), p 107–120

    Article  Google Scholar 

  46. A. Kapoor, Wear by Plastic Ratchetting, Wear, 1997, 212, p 119–130

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP) and Universidad Nacional del Sur (UNS) for the financial support provided. This research was partially financed by SIDERCA S.A.I.C. (Tenaris) through a collaboration agreement with CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Bengoa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bengoa, L.N., Tuckart, W.R., Zabala, N. et al. Tin Coatings Electrodeposited from Sulfonic Acid-Based Electrolytes: Tribological Behavior. J. of Materi Eng and Perform 24, 2274–2281 (2015). https://doi.org/10.1007/s11665-015-1503-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1503-4

Keywords

Navigation