Skip to main content

Advertisement

Log in

Influence of Soft Drinks with Low pH on Different Ni-Ti Orthodontic Archwire Surface Patterns

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the influence of soft drinks on the surface of Ni-Ti archwires and their corrosion behavior. Archwires with different patterns (smooth, scratch, dimple, and crack) were selected and characterized by scanning electron microscopy and laser confocal microscopy. Immersion tests were performed in artificial saliva (pH 6.7) with a soft drink with a pH of 2.5 for 28 days. The results showed an increase in the surface defects and/or roughness of the dimple, crack and scratch patterns with the immersion times, and a decrease in corrosion resistance. A relationship between the surface pattern and the extent of the corrosion in Ni-Ti archwires with soft drinks at low pH has been demonstrated. Pattern should be taken into account in future studies, and manufacturing processes that produce surface defects (especially cracks) should be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D.J. Wever, A.G. Veldhuizen, J. de Vries, H.J. Busscher, D.R. Uges, and J.R. van Horn, Electrochemical and Surface Characterization of a Nickel-Titanium Alloy, Biomaterials, 1998, 19(7–9), p 761–769

    Article  CAS  Google Scholar 

  2. J. Wang, N. Li, G. Rao, E.H. Han, and W. Ke, Stress Corrosion Cracking of NiTi in Artificial Saliva, Dent. Mater., 2007, 23(2), p 133–137

    Article  CAS  Google Scholar 

  3. H.H. Huang, Y.H. Chiu, T.H. Lee, S.C. Wu, H.W. Yang, and K.H. Su, Ion Release from NiTi Orthodontic Wires in Artificial Saliva with Various Acidities, Biomaterials, 2003, 24(20), p 3585–3592

    Article  CAS  Google Scholar 

  4. H.H. Huang, Surface Characterizations and Corrosion Resistance of Nickel-Titanium Orthodontic Archwires in Artificial Saliva of Various Degrees of Acidity, J. Biomed. Mater. Res. A, 2005, 74(4), p 629–639

    Google Scholar 

  5. X. Li, J. Wang, E.H. Han, and W. Ke, Influence of Fluoride and Chloride on Corrosion Behavior of NiTi Orthodontic Wires, Acta Biomater., 2007, 3(5), p 807–815

    Article  CAS  Google Scholar 

  6. H.H. Huang, Variation in Surface Topography of Different NiTi Orthodontic Archwires in Various Commercial Fluoride-Containing Environments, Dent. Mater., 2007, 23(1), p 24–33

    Article  Google Scholar 

  7. T.H. Lee, T.K. Huang, S.Y. Lin, L.K. Chen, M.Y. Chou, and H.H. Huang, Corrosion Resistance of Different Nickel-Titanium Archwires in Acidic Fluoride-Containing Artificial Saliva, Angle Orthod., 2010, 80(3), p 547–553

    Article  Google Scholar 

  8. Y.H. Kwon, Y.D. Cheon, H.J. Seol, J.H. Lee, and H.I. Kim, Changes on NiTi Orthodontic Wired due to Acidic Fluoride Solution, Dent. Mater. J., 2004, 23(4), p 557–565

    Article  CAS  Google Scholar 

  9. A. Ramalingam, V. Kailasam, S. Padmanabhan, and A. Chitharanjan, The Effect of Topical Fluoride Agents on the Physical and Mechanical Properties of NiTi and Copper NiTi Archwires. An In Vivo Study, Aust. Orthod. J., 2008, 24(1), p 26–31

    Google Scholar 

  10. N. Schiff, B. Grosgogeat, M. Lissac, and F. Dalard, Influence of Fluoridated Mouthwashes on Corrosion Resistance of Orthodontics Wires, Biomaterials, 2004, 25(19), p 4535–4542

    Article  CAS  Google Scholar 

  11. N. Schiff, M. Boinet, L. Morgon, M. Lissac, F. Dalard, and B. Grosgogeat, Galvanic Corrosion Between Orthodontic Wires and Brackets in Fluoride Mouthwashes, Eur. J. Orthod., 2006, 28(3), p 298–304

    Article  Google Scholar 

  12. I. Watanabe and E. Watanabe, Surface Changes Induced by Fluoride Prophylactic Agents on Titanium-Based Orthodontic Wires, Am. J. Orthod. Dentofacial Orthop., 2003, 123(6), p 653–656

    Article  Google Scholar 

  13. M.P. Walker, R.J. White, and K.S. Kula, Effect of Fluoride Prophylactic Agents on the Mechanical Properties of Nickel-Titanium-Based Orthodontic Wires, Am. J. Orthod. Dentofacial Orthop., 2005, 127(6), p 662–669

    Article  Google Scholar 

  14. K. Yokoyama, K. Kaneko, K. Moriyama, K. Asaoka, J. Sakai, and M. Nagumo, Hydrogen Embrittlement of Ni-Ti Superelastic Alloy in Fluoride Solution, J. Biomed. Mater. Res. A, 2003, 65(2), p 182–187

    Article  Google Scholar 

  15. N. Schiff, B. Grosgogeat, M. Lissac, and F. Dalard, Influence of Fluoride Content and pH on the Corrosion Resistance of Titanium and Its Alloys, Biomaterials, 2002, 23(9), p 1995–2002

    Article  CAS  Google Scholar 

  16. M. Es-Souni, T. Es-Souni, and H. Fischer-Brandies, On the Properties of Two Binary NiTi Shape Memory Alloys. Effects of Surface Finish on the Corrosion Behaviour and In Vitro Biocompatibility, Biomaterials, 2002, 23(14), p 2887–2894

    Article  CAS  Google Scholar 

  17. A. Wichelhaus, M. Geserick, R. Hibst, and F.G. Sander, The Effect of Surface Treatment and Clinical Use on Friction in NiTi Orthodontic Wires, Dent. Mater., 2005, 21(10), p 938–945

    Article  CAS  Google Scholar 

  18. Y. Oshida, R.C. Sachdeva, and S. Miyazaki, Microanalytical Characterization and Surface Modification of TiNi Orthodontic Archwires, Biomed. Mater. Eng., 1992, 2(2), p 51–69

    CAS  Google Scholar 

  19. H.H. Huang, Variation in Corrosion Resistance of Nickel-Titanium Wires from Different Manufacturers, Angle Orthod., 2005, 75(4), p 661–665

    Google Scholar 

  20. F. Widu, D. Drescher, R. Junker, and C. Bourauel, Corrosion and Biocompatibility of Orthodontic Wires, J. Mater. Sci. Mater. Med., 1999, 10(5), p 275–281

    Article  CAS  Google Scholar 

  21. M. Es-Souni, H. Fischer-Brandies, N. Koc, O. Bo, K. Rätzke. Chemische Zusammensetzung, Umwandlungsverhalten und mechanische Biegeeigenschaften ausgewählter kieferorthopädischer NiTi-Drahtbögen. IOK 2001, 33, p 87–106

    Google Scholar 

  22. A. Paúl, C. Abalos, A. Mendoza, E. Solano, and F.J. Gil, Relationship Between the Surface Defects and the Manufacturing Process of Orthodontic Ni-Ti Archwires, Mater. Lett., 2011, 65(23–24), p 3358–3361

    Article  Google Scholar 

  23. I. Van Eygen, B.V. Vannet, and H. Wehrbein, Influence of a Soft Drink with Low pH on Enamel Surfaces: An In Vitro Study, Am. J. Orthod. Dentofacial Orthop., 2005, 128(3), p 372–377

    Article  Google Scholar 

  24. J.A. von Fraunhofer and M.M. Rogers, Dissolution of Dental Enamel in Soft Drinks, Gen. Dent., 2004, 52(4), p 308–312

    Google Scholar 

  25. ISO-standard 10993-15:2000 “Biological evaluation of medical devices. Part 15: Identification and quantification of degradation products from metals and alloys”

  26. J.D. Shenkin, K.E. Heller, J.J. Warren, and T.A. Marshall, Soft Drink Consumption and Caries Risk in Children and Adolescents, Gen. Dent., 2003, 51(1), p 30–36

    Google Scholar 

  27. L. Harnack, J. Stang, and M. Story, Soft Drink Consumption Among US Children and Adolescents: Nutritional Consequences, J. Am. Diet. Assoc., 1999, 99(4), p 436–441

    Article  CAS  Google Scholar 

  28. C. Bourauel, T. Fries, D. Drescher, and R. Plietsch, Surface Roughness of Orthodontic Wires Via Atomic Force Microscopy, Laser Specular Reflectance, and Profilometry, Eur. J. Orthod., 1998, 20(1), p 79–92

    Article  CAS  Google Scholar 

  29. C. Abalos, A. Paúl, A. Mendoza, E. Solano, and F.J. Gil, Influence of Topographical Features on the Fluoride Corrosion of Ni-Ti Orthodontic Archwires, J. Mater. Sci.: Mater. Med., 2011, 22(12), p 2813–2821

    Article  CAS  Google Scholar 

  30. N.X. West, J.A. Hughes, and M. Addy, Erosion of Dentine and Enamel In Vitro by Dietary Acids: The Effect of Temperature, Acid Character, Concentration and Exposure Time, J. Oral Rehabil., 2000, 27(10), p 875–880

    Article  CAS  Google Scholar 

  31. A.J. Rugg-Gunn and J.H. Nunn, Diet and Dental Erosion. Nutrition, Diet and Oral Health, Oxford University Press, Hong Kong, 1999, p 32

    Google Scholar 

  32. M.R. Grimsdottir and A. Hensten-Pettersen, Surface Analysis of Nickel-Titanium Archwire Used In Vivo, Dent. Mater., 1997, 13(3), p 163–167

    Article  CAS  Google Scholar 

  33. T. Eliades, G. Eliades, A.E. Athanasiou, and T.G. Bradley, Surface Characterization of Retrieved NiTi Orthodontic Archwires, Eur. J. Orthod., 2000, 22(3), p 317–326

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Juan Luis Ribas (LSCM expert) and the Center for Technology and Innovation Research, University of Seville (CITIUS), for their collaboration in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Gil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abalos, C., Paul, A., Mendoza, A. et al. Influence of Soft Drinks with Low pH on Different Ni-Ti Orthodontic Archwire Surface Patterns. J. of Materi Eng and Perform 22, 759–766 (2013). https://doi.org/10.1007/s11665-012-0311-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0311-3

Keywords

Navigation