Skip to main content
Log in

Latest Developments in Long-Wavelength and Very-Long-Wavelength Infrared Detection with p-on-n HgCdTe

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report recent developments at Commissariat à l’Energie Atomique-Laboratoire d’Electronique des Technologies de l’Information Infrared Laboratory on the processing and characterization of p-on-n HgCdTe (MCT) planar infrared focal plane arrays (FPAs) operating in the long-wavelength infrared (LWIR) and very-long-wavelength infrared (VLWIR) spectral bands. The active layers in these FPAs were grown by liquid phase epitaxy (LPE) on a lattice-matched CdZnTe substrate. This technological process results in lower dark current and lower serial resistance than for n-on-p vacancy-doped architecture and thus is better adapted for lower flux detection or higher operating temperature. This architecture was evaluated for space applications in the LWIR and VLWIR spectral bands with cutoff wavelengths from 10 to 17 μm at 78 K. Innovations have been introduced to the technological process to form a heterojunction by use of an LPE growth technique. The initial objective was to reduce the dark current at low temperatures, by reducing the transition temperature from diffusion-limited to depletion-limited dark current. Another advantage is that the wider bandgap obtained in the vicinity of the junction ensures less sensitivity to the defects present at the interface between MCT and passivation layers. Electro-optical characterization of p-on-n photodiodes was performed on quarter video graphics array format FPAs with 25 and 30 μm pixel pitches. The results revealed excellent operabilities in current and responsivity, with low dispersion, and noise limited by current shot noise. Studies performed on the dark current show that dark current densities at 78 K are consistent with the heuristic prediction law “Rule 07”. Below this temperature, dark current varies as a pure diffusion current for a variety of devices from different manufacturers, introducing a temperature range limitation in the description of the “Rule 07” law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Mollard, G. Destefanis, J. Rothman, N. Baier, P. Ballet, and J.W. Bourgeois, et al., Proc. SPIE 6940, 69400F (2008).

    Article  Google Scholar 

  2. L. Mollard, G. Destefanis, J. Rothman, N. Baier, P. Bisotto, and P. Ballet, et al., J. Electron. Mater. 38, 1805 (2009).

    Article  Google Scholar 

  3. L.O. Bubulac, J. Cryst. Growth 86, 723 (1988).

    Article  Google Scholar 

  4. L.O. Bubulac, D.S. Lo, W.E. Tennant, D.D. Edwall, J.C. Chen, J. Ratusnik, J.C. Robinson, and G. Bostrup, Appl. Phys. Lett. 50, 1586 (1987).

    Article  Google Scholar 

  5. A. Manissadjian, Y. Reibel, L. Rubaldo, L. Mollard, and D. Brelier, Proc. SPIE 8353, 835334 (2012).

    Article  Google Scholar 

  6. O. Gravrand, O. Boulade, V. Moreau, E. Sanson, and G. Destefanis, J. Electron. Mater. 41, 2686 (2012).

    Article  Google Scholar 

  7. N. Baier, L. Mollard, O. Gravrand, G. Bourgeois, J.-P. Zanatta, G. Destefanis, O. Boulade, V. Moreau, F. Pinsard, L. Tauziède, A. Bardoux, L. Rubaldo, A. Kerlain, and J.-C. Peyrar, Proc. SPIE 8704, 87042P (2013).

    Article  Google Scholar 

  8. W.E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, J. Electron. Mater. 37, 1406 (2008).

    Article  Google Scholar 

  9. W.E. Tennant, J. Electron. Mater. 37, 1030 (2010).

    Article  Google Scholar 

  10. N. Baier, L. Mollard, J. Rothman, G. Destefanis, P. Ballet, and J.P. Bourgeois, et al., Proc. SPIE 7298, 729823 (2009).

    Article  Google Scholar 

  11. L. Mollard, G. Destefanis, J.P. Bourgeois, A. Ferron, N. Baier, and O. Gravrand, et al., J. Electron. Mater. 40, 1830 (2011).

    Article  Google Scholar 

  12. J. Rothman, J. Electron. Mater. 35, 1174 (2006).

    Article  Google Scholar 

  13. O. Gravrand, E. Borniol, S. Bisotto, L. Mollard, and G. Destefanis, J. Electron. Mater. 36, 981 (2007). doi:10.1007/s11664-007-0151-3.

    Article  Google Scholar 

  14. O. Gravrand, L. Mollard, C. Largeron, N. Baier, E. DeBorniol, and P. Chorier, J. Electron. Mater. 38, 1733 (2009). doi:10.1007/s11664-009-0795-2.

    Article  Google Scholar 

  15. N. Baier, L. Mollard, O. Gravrand, G. Bourgeois, J.P. Zanatta, and G. Destefanis, et al., Proc. SPIE 8353, 83532N (2012).

    Article  Google Scholar 

  16. L. Puig, K.G. Isaak, M. Linder, I. Escudero, D. Martin, P.E. Crouzet, L. Gaspar Venancio, and A. Zuccaro Marchi, Proc. SPIE 8442, 844206 (2012).

    Article  Google Scholar 

  17. C. McMurtry, D. Lee, J. Beletic, C.A. Chen, R.T. Demers, M. Dorn, D. Edwall, C. Bacon Fazar, W.J. Forrest, F. Liu, A.K. Mainzer, J.L. Pipher, and A. Yulius, Opt. Eng. 52, 091804-1 (2013).

    Article  Google Scholar 

  18. C. Fulk, W. Radford, D. Buell, J. Bangs, and K. Rybnicek, J.␣Electron. Mater. (2015). doi:10.1007/s11664-015-3740-6.

  19. G.L. Hansen, J. Appl. Phys. 53, 7099 (1982).

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the French “Centre National d’Etudes Spatiales” (CNES) and LabEx FOCUS (ANR-11-LABX-0013) for their support of some of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Baier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baier, N., Cervera, C., Gravrand, O. et al. Latest Developments in Long-Wavelength and Very-Long-Wavelength Infrared Detection with p-on-n HgCdTe. J. Electron. Mater. 44, 3144–3150 (2015). https://doi.org/10.1007/s11664-015-3851-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3851-0

Key words

Navigation