Skip to main content
Log in

Thermoelectric Properties of Tetrathiotetracene Iodide Crystals: Modeling and Experiment

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A more complete physical model for nanostructured crystals of tetrathiotetracene-iodide that takes into account the interaction of carriers with the neighboring one-dimensional (1D) conductive chains and also the scattering on impurities and defects is presented. For simplicity, the 2D approximation is applied. It is shown that this model describes very well the temperature dependencies of electrical conductivity in the temperature interval between 180 and 300 K, and of the Seebeck coefficient between 50 and 300 K, the highest temperature for which the measurements were reported. For lower temperatures, it is necessary to also consider the fluctuations of dielectric phase that appear before the metal–dielectric transition. It is found that the predictions made in the 1D approximation are valid only if the crystal purity is not very high, and the electrical conductivity is limited up to \({\sim }3.5\times 10^{6}\,\Omega ^{-1}\,\hbox {m}^{-1}\) and the thermoelectric figure of merit up to \(ZT\sim 4\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Bubnova et al., Nat. Mater. 10, 429 (2011).

    Article  Google Scholar 

  2. R. Yue, Synth. Met. 162, 912 (2012).

    Article  Google Scholar 

  3. H.L. Kwok, JEM 41, 476 (2012).

    Article  Google Scholar 

  4. G.-H. Kim, L. Shao, K. Zhang, K.P. Pipe, Nat. Matter. 12, 719 (2013).

    Article  Google Scholar 

  5. Y. Sun, P. Sheng, C. Di, F. Jiao, W. Xu, and D. Zhu, Adv. Mater. (2012). doi:10.1002/adma.201104305.

  6. T.O. Poehler, H.E. Katz, Energy Environ. Sci. 5, 8110 (2012). doi:10.1039/C2EE22124A.

    Article  Google Scholar 

  7. K. Hayashi, T. Shinano, Y. Miyazaki, T. Kajitani, J. Appl. Phys. 109, 023712 (2011).

    Article  Google Scholar 

  8. Y.Y. Wang, K.F. Cai, J.L. Yin, B.J. An, Y. Du, X. Yao, J. Nanopart. Res. 13, 533 (2011).

    Article  Google Scholar 

  9. W.Q. Ao, L. Wang, J.Q. Li, F. Pan, C.N. Wu, JEM 40, 2027 (2011).

    Article  Google Scholar 

  10. J. Yang, H.-L. Yip, A.K.-Y. Jen, Adv. Energy Mater. 3, 549 (2013).

    Article  Google Scholar 

  11. Shane P. Ashby, Jorge Garcia-Canadas, Gao Min, Yimin Chao, JEM 42, 1495 (2013).

    Article  Google Scholar 

  12. G. Kim, K.P. Pipe, Phys. Rev. B 86, 085208 (2012).

    Article  Google Scholar 

  13. J. Chen, D. Wang, Z. Shuai, J. Chem. Theory Comput. 8, 3338 (2012). doi:10.1021/ct3004436.

    Article  Google Scholar 

  14. Zheyong Fan, Hui-Qiong Wang, Jin-Cheng Zheng, J. Appl. Phys. 109, 073713 (2011).

    Article  Google Scholar 

  15. D. Wang, L. Tang, M. Long, Z. Shuai, J. Phys. Chem. C 115, 5940 (2011). doi:10.1021/jp108739c.

    Article  Google Scholar 

  16. Y. Wang, J. Zhou, R. Yang, J. Phys. Chem. C 115, 24418 (2011).

    Article  Google Scholar 

  17. A. Casian, in: Thermoelectric Handbook, Macro to Nano, Chap. 36, ed. D.M. Rowe (Boca Raton, FL: CRC Press, 2006).

  18. A. Casian, J.G. Stockholm, V. Dusciac, V. Nicic, J. Nanoelectron. Optoelectron. 4, 95 (2009).

    Article  Google Scholar 

  19. A. Casian, V. Dusciac, Iu Coropceanu, Phys. Rev. B 66, 165404 (2002).

    Article  Google Scholar 

  20. A. Casian, I. Sanduleac, J. Nanoelectron. Optoelectron. 7, 706 (2012).

    Article  Google Scholar 

  21. V.F. Kaminskii, M.L. Khidekel’, R.B. Lyubovskii et al., Phys. Status Solidi A 44, 77 (1977).

    Article  Google Scholar 

  22. R.P. McVall, D.B. Tanner, L.S. Miller, A.J. Epstein, Bull. Am. Phys. Soc. 28, 445 (1983).

    Google Scholar 

  23. K. Mortensen, J.M. Fabre, E.M. Conwell, Phys. Rev. B 28, 5856 (1983).

    Article  Google Scholar 

  24. V.J. Emery, R. Bruinsma, S. Barisic, Phys. Rev. Lett. 48, 1039 (1982).

    Article  Google Scholar 

  25. P.M. Chaikin, G. Gruner, I.F. Shchegolev, E.B. Yagubskii, Solid State Commun. 32, 1211 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatolie Casian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casian, A., Sanduleac, I. Thermoelectric Properties of Tetrathiotetracene Iodide Crystals: Modeling and Experiment. J. Electron. Mater. 43, 3740–3745 (2014). https://doi.org/10.1007/s11664-014-3105-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3105-6

Keywords

Navigation