Skip to main content
Log in

Transmission Electron Microscopy-Based Analysis of Electrically Conductive Surface Defects in Large Area GaSb Homoepitaxial Diodes Grown Using Molecular Beam Epitaxy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We investigate a mechanism causing shorting of large area GaSb diodes grown on GaSb substrates using molecular beam epitaxy (MBE). The source of these shorts is determined to be large crystallographic defects on the surface of the diodes that are formed around droplets of gallium ejected from the gallium Knudsen cells during MBE. The gallium droplets cause defects in the crystal structure, and, as the epitaxy continues, the gallium is incorporated into the surrounding material. The shape of the defects is pyramidal with a central void extending from the epi-surface to the gallium core. Processing a GaSb diode with these surface defects results in the top-side contact metal migrating into the defect and shorting the diode. This prevents realization of large area diodes that are critical to applications such as photovoltaics and detectors. The diodes in this study are electrically characterized and the defect formation mechanism is investigated using cross-section transmission electron microscopy and electron dispersive spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Soibel, C. Frez, A. Ksendzov, S. Keo, S. Forouhar, G. Tsvid, G. Kipshidze, L. Shterengas, and G. Belenky, Semicond. Sci. Technol. 26, 095024 (2011).

    Article  Google Scholar 

  2. B.R. Bennett, R. Magno, J.B. Boos, W. Kruppa, and M.G. Ancona, Solid State Electron. 49, 1875 (2005).

    Article  Google Scholar 

  3. E. Plis, M.N. Kutty, S. Myers, H.S. Kim, N. Gautam, L.R. Dawson, and S. Krishna, Infrared Phys. Technol. 54, 252 (2011).

    Article  Google Scholar 

  4. H. Kroemer, Phys. E 20, 196 (2004).

    Article  Google Scholar 

  5. M.G. Mauk and V. Andreev, Semicond. Sci. Technol. 18, S191 (2003).

    Article  Google Scholar 

  6. C.W. Hitchcock, R.J. Gutmann, H. Ehsani, I.B. Bhat, C.A. Wang, M.J. Freeman, and G.W. Charache, J. Cryst. Growth 195, 363 (1998).

    Article  Google Scholar 

  7. L. Fraas, J. Avery, R. Ballantyne, P. Custard, L. Ferguson, H.H. Xiang, and D. Williams, AIP Conf. Proc. 401, 369 (1997).

    Google Scholar 

  8. L.M. Fraas, G.R. Girard, J.E. Avery, B.A. Arau, V.S. Sundaram, A.G. Thompson, and J.M. Gee, J. Appl. Phys. 66, 3866 (1989).

    Article  Google Scholar 

  9. S.K. Haywood, A.B. Henriques, N.J. Mason, R.J. Nicholas, and P.J. Walker, Semicond. Sci. Technol. 3, 315 (1988).

    Article  Google Scholar 

  10. M.C. Wu and C.C. Chen, J. Appl. Phys. 72, 4275 (1992).

    Article  Google Scholar 

  11. C. Woelk and K.W. Benz, J. Cryst. Growth 27, 177 (1974).

    Google Scholar 

  12. F.S. Juang and Y.K. Su, Prog. Cryst. Growth Charact. 20, 285 (1990).

    Article  Google Scholar 

  13. B.Z. Nosho, B.R. Bennet, E.H. Aifer, and M. Goldenberg, J. Cryst. Growth 236, 155 (2002).

    Article  Google Scholar 

  14. J.O. Kim and S.K. Noh, Curr. Appl. Phys. 12, 1624 (2012).

    Article  Google Scholar 

  15. C.J. Vineis, C.A. Wang, and K.F. Jensen, J. Cryst. Growth 225, 420 (2001).

    Article  Google Scholar 

  16. L.M. Murray, A. Yildirim, S.R. Provence, D.T. Norton, and T.F. Boggess, J. Vac. Sci. Technol. B 31, 03C108 (2013).

    Article  Google Scholar 

  17. C.E.C. Wood, L. Rathbun, H. Ohno, and D. DeSimone, J. Cryst. Growth 51, 299 (1981).

    Article  Google Scholar 

  18. G.D. Pettit, J.M. Woodall, S.L. Wright, P.D. Kirchner, and J.L. Freeouf, J. Vac. Sci. Technol. B 2, 241 (1984).

    Article  Google Scholar 

  19. S. Mahajan, Acta Mater. 48, 137 (2000).

    Article  Google Scholar 

  20. S.K. Mehta, R. Muralidharan, G.D. Sharda, and R.K. Jain, Semicond. Sci. Technol. 7, 635 (1992).

    Article  Google Scholar 

  21. M. DeJarld, K. Reyes, P. Smereka, and J.M. Millunchick, Appl. Phys. Lett. 102, 133107 (2013).

    Article  Google Scholar 

  22. J. Lee, Z.M. Wang, E.-S. Kim, N.-Y. Kim, S.-H. Park, and G.J. Salamo, IEEE Trans. Nanotechnol. 10, 395 (2001).

    Article  Google Scholar 

  23. P.E. Hopkins, J.C. Duda, S.P. Clark, C.P. Hains, T.J. Rotter, L.M. Phinney, and G. Balakrishnan, Appl. Phys. Lett. 98, 161913 (2011).

    Article  Google Scholar 

  24. C. Somaschini, S. Bietti, N. Koguchi, and S. Sanguinetti, Nano Lett. 9, 3419 (2009).

    Article  Google Scholar 

  25. E. Cohen, N. Elfasy, G. Koplovitz, S. Yochelis, S. Shusterman, D.P. Kumah, Y. Yacoby, R. Clarke, and Y. Paltiel, Sensors 11, 10624 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O.S. Romero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero, O., Aragon, A., Rahimi, N. et al. Transmission Electron Microscopy-Based Analysis of Electrically Conductive Surface Defects in Large Area GaSb Homoepitaxial Diodes Grown Using Molecular Beam Epitaxy. J. Electron. Mater. 43, 926–930 (2014). https://doi.org/10.1007/s11664-014-3070-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3070-0

Keywords

Navigation