Skip to main content
Log in

An Investigation into III–V Compounds to Reach 20% Efficiency with Minimum Cell Thickness in Ultrathin-Film Solar Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

III–V single-junction solar cells have already achieved very high efficiency levels. However, their use in terrestrial applications is limited by the high fabrication cost. High-efficiency, ultrathin-film solar cells can effectively solve this problem, as their material requirement is minimum. This work presents a comparison among several III–V compounds that have high optical absorption capability as well as optimum bandgap (around 1.4 eV) for use as solar cell absorbers. The aim is to observe and compare the ability of these materials to reach a target efficiency level of 20% with minimum possible cell thickness. The solar cell considered has an n-type ZnSe window layer, an n-type Al0.1Ga0.9As emitter layer, and a p-type Ga0.5In0.5P back surface field (BSF) layer. Ge is used as the substrate. In the initial design, a p-type InP base was sandwiched between the emitter and the BSF layer, and the design parameters for the device were optimized by analyzing the simulation outcomes with ADEPT/F, a one-dimensional (1D) simulation tool. Then, the minimum cell thickness that achieves 20% efficiency was determined by observing the efficiency variation with cell thickness. Afterwards, the base material was changed to a few other selected III–V compounds, and for each case, the minimum cell thickness was determined in a similar manner. Finally, these cell thickness values were compared and analyzed to identify more effective base layer materials for III–V single-junction solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, and N.H. Karam, Appl. Phys. Lett. 90, 183516 (2007).

    Article  Google Scholar 

  2. M. Yamaguchi, T. Takamoto, and K. Araki, Sol. Energy Mater. Sol. Cells 90, 3068 (2006).

    Article  CAS  Google Scholar 

  3. J.J. Schermer, G.J. Bauhuis, P. Mulder, E.J. Haverkamp, J. van Deelen, A.T.J. van Niftrik, and P.K. Larsen, Thin Solid Films 511, 645 (2006).

    Article  Google Scholar 

  4. T.V. Torchynska and G.P. Polupan, Semicond. Phys. Quantum Electron. Optoelectron. 5, 63 (2002).

    CAS  Google Scholar 

  5. L.W. James (Proceedings of IEEE International Electron Devices Meeting, Washington, USA, 1975, pp. 87–90).

  6. Ioffe Physical Technical Institute, NSM Archive—Physical Properties of Semiconductors, 2005, http://www.ioffe.ru/SVA/NSM/Semicond/.

  7. T.H. Glisson, J.R. Hauser, M.A. Littlejohn, and C.K. Williams, J. Electron. Mater. 7, 1 (1978).

    Article  CAS  Google Scholar 

  8. J.F. Geisz, D.J. Friedman, and S. Kurtz, Proceedings 29th IEEE Photovoltaic Specialists Conference (Louisiana, USA, 2002), pp. 864–867.

  9. C.Y. Kim, J.H. Cha, J. Kim, and Y.S. Kwon, Proceedings of 31st IEEE Photovoltaic Specialists Conference (Florida, USA, 2005), pp. 703–706.

  10. J.L. Gray, Michael McLennan, Adept, 2008, http://nanohub.org/resources/adept/.

  11. B.G. Streetman and S.K. Banerjee, Solid State Electronic Devices, 6th ed. (New Jersey: Prentice Hall, 2006).

    Google Scholar 

  12. T. Minemoto, T. Negami, S. Nishiwaki, H. Takakura, and Y. Hamakawa, Thin Solid Films 372, 173 (2000).

    Article  CAS  Google Scholar 

  13. U.S. Department of Energy, Energy Basics, 2011. http://www.eere.energy.gov/basics/renewable_energy/pv_cell_structures.html.

  14. J.W. Matthews and A.E. Blakeslee, J. Cryst. Growth 27, 118 (2011).

    Google Scholar 

  15. ECEn IMMERSE Web Team, Brigham Young University, Energy Gap in III–V Ternary Semiconductors, 2009, http://www.cleanroom.byu.edu/EW_ternary.phtml.

  16. J.G. Fossum, IEEE Trans. Electron Devices 24, 322 (1977).

    Article  Google Scholar 

  17. L. Knuuttila, K. Kainu, M. Sopanen, and H. Lipsanen, J. Mater. Sci. Mater. Electron. 14, 349 (2003).

    Article  CAS  Google Scholar 

  18. T. Tiedje, E. Yablonovitch, G.D. Cody, and B.G. Brooks, IEEE Trans. Electron Devices ED-31, 711 (1984).

    Article  CAS  Google Scholar 

  19. B.G. Streetman and S.K. Banerjee, Solid State Electronic Devices, 6th ed. (New Jersey: Prentice-Hall, 2006), p. 540.

  20. D.C. Oha, J.H. Changa, T. Takai, J.S. Songa, K. Godoa, Y.K. Parkb, K. Shindob, and T. Yaoa, J. Cryst. Growth 251, 607 (2003).

    Article  Google Scholar 

  21. M. Aven, D.T.F. Marple, and B. Segall, J. Appl. Phys. 32, 2261 (1961).

    Article  CAS  Google Scholar 

  22. Global-Sino, Minority carrier lifetimes in silicon, germanium, GaAs and ZnSe materials, 2006, http://www.globalsino.com/micro/1/1micro9827.html.

  23. Y. Kaneko and K. Kishino, J. Appl. Phys. 76, 1809 (1994).

    Article  CAS  Google Scholar 

  24. M. Ikeda and K. Kaneko, J. Appl. Phys. 66, 5285 (1989).

    Article  CAS  Google Scholar 

  25. B. Zhang, S. Lan, L.Q. Li, W.J. Xu, G.Q. Yang, and H.D. Liu, Solid State Commun. 92, 419 (1994).

    Article  CAS  Google Scholar 

  26. T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori, Sol. Energy Mater. Sol. Cells 35, 25 (1994).

    Article  CAS  Google Scholar 

  27. M.S. Hossain, N. Amin, M.A. Matin, M.M. Aliyu, T. Razykov, and K. Sopian, Chalcogenide Lett. 8, 263 (2011).

    CAS  Google Scholar 

  28. M. Vos, F. Xu, J.H. Weaver, and H. Cheng, Appl. Phys. Lett. 53, 1530 (1988).

    Article  CAS  Google Scholar 

  29. L. Aiguo, D. Jianning, Y. Ningyi, W. Shubo, C. Guanggui, and L. Chao, J. Semicond. 33, 023002 (2012).

    Article  Google Scholar 

  30. C. Lee, H. Efstathiadis, J.E. Raynolds, and P. Haldar, Proceedings of IEEE 34th Photovoltaic Specialists Conference (2009), pp. 1118–1122.

  31. M.C. Tseng, R.H. Horng, F.L. Wu, S.N. Lin, H.H. Yu, and D.S. Wuu, Vacuum 86, 843 (2012).

    Article  CAS  Google Scholar 

  32. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, Prog. Photovolt: Res. Appl. 20, 12 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. S. M. Ehteshamul Haque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haque, K.A.S.M.E., Galib, M.M.H. An Investigation into III–V Compounds to Reach 20% Efficiency with Minimum Cell Thickness in Ultrathin-Film Solar Cells. J. Electron. Mater. 42, 2867–2875 (2013). https://doi.org/10.1007/s11664-013-2693-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2693-x

Keywords

Navigation