Skip to main content

Advertisement

Log in

Ge/SiGe Superlattices for Thermoelectric Devices Grown by Low-Energy Plasma-Enhanced Chemical Vapor Deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ge/SiGe multiple quantum wells are presented as efficient material for room-temperature thermoelectric generators monolithically integrated onto silicon. We have deposited and characterized 10-μm-thick heterostructures engineered for lateral devices, in which both heat and current flow parallel to the multilayer. In this paper we investigate in detail the structural and interface quality by means of x-ray diffraction and transmission electron microscopy. Thermoelectric measurements, giving a figure of merit of 0.04 to 0.08, together with mobility spectra and defect analysis suggest possibilities of even higher efficiency. Nevertheless, the high power factor of 2 mW/K2m to 6 mW/K2m is promising for applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Rowe, ed., Thermoelectrics Handbook: Macro to Nano (Boca Raton, FL: CRC Press Taylor and Francis, 2006).

  2. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).

    Article  CAS  Google Scholar 

  3. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  CAS  Google Scholar 

  4. B. Rössner, D. Chrastina, G. Isella, and H. von Känel, Appl. Phys. Lett. 84, 3058 (2004).

    Article  Google Scholar 

  5. G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H.J. Herzog, U. König, and H. von Känel, Solid State Electron. 48, 1317 (2004).

    Article  CAS  Google Scholar 

  6. D.J. Paul, Laser Photon. Rev. 4, 610 (2010).

    Article  CAS  Google Scholar 

  7. W.J. Bartels, J. Hornstra, and D.J.W. Lobeek, Acta Crystallogr. A 42, 539 (1986).

    Article  Google Scholar 

  8. S. Cecchi, T. Etzelstorfer, E. Müller, A. Samarelli, L.F. Llin, D. Chrastina, G. Isella, J. Stangl, and D.J. Paul, J. Mater. Sci. doi:10.1007/s10853-012-6825-0. Accessed September 2012 (2012).

  9. D.J. Paul, A. Samarelli, L. Ferre-Llin, J.R. Watling, Y. Zhang, J.M.R. Weaver, P.S. Dobson, S. Cecchi, J. Frigerio, F. Isa, D. Chrastina, G. Isella, T. Etzelstorfer, J. Stangl, and E. Müller Gubler, Proceedings of the 12th IEEE International Conference on Nanotechnology (IEEE-NANO) (Piscataway, NJ: IEEE, 2012), pp. 1–5.

  10. A. Samarelli, L. Ferre Llin, Y. Zhang, J.M.R. Weaver, P. Dobson, S. Cecchi, D. Chrastina, G. Isella, T. Etzelstorfer, J. Stangl, E. Müller Gubler, and D.J. Paul, J. Electron. Mater. doi:10.1007/s11664-012-2287-z. Accessed November 2012 (2012).

  11. D. Chrastina, J.P. Hague, and D.R. Leadley, J. Appl. Phys. 94, 6583 (2003).

    Article  CAS  Google Scholar 

  12. J.R. Watling and D.J. Paul, J. Appl. Phys. 110, 114508 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Cecchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cecchi, S., Etzelstorfer, T., Müller, E. et al. Ge/SiGe Superlattices for Thermoelectric Devices Grown by Low-Energy Plasma-Enhanced Chemical Vapor Deposition. J. Electron. Mater. 42, 2030–2034 (2013). https://doi.org/10.1007/s11664-013-2511-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2511-5

Keywords

Navigation