Skip to main content
Log in

Four-Wire Resistance Measurements of a Bismuth Nanowire Encased in a Quartz Template Utilizing Focused Ion Beam Processing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Four-wire resistance measurements were performed using a bismuth nanowire, 750 nm in diameter, 1.96 mm in length, and encapsulated in a quartz template. One side of the quartz template was polished to allow focused ion beam (FIB) processing, and metal film layers were deposited on the polished side to form electrodes. Nanofabrication was employed to remove a selected portion of the quartz, and FIB processing was used to expose the surface of the bismuth nanowire. A local area of the bismuth wire was successfully exposed, and a carbon electrode was deposited on the bismuth wire in situ by a chemical reaction between the ion beam and phenanthrene gas. Additional carbon deposition on the initial carbon electrode was used to connect to a metal film on the quartz template. In total, four nanofabrications were performed on the bismuth wire to create the desired electrical contacts. The resistivity of the nanowire was measured by a four-wire method to be 1.29 μΩ m at 300 K, corresponding to that of bulk bismuth. The temperature dependence of the resistivity was also measured, and was qualitatively and quantitatively in good agreement with previous calculated and experimental results using other bismuth nanowires. The present results demonstrate the successful development of a technique to fabricate an electrode on a local area of a nanowire using FIB processing to form suitable electrical contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).

    Article  CAS  Google Scholar 

  2. M.S. Dresselhaus, Y.M. Lin, O. Rabin, A. Jorio, A.G. Souza Filho, M.A. Pimenta, R. Saito, Ge.G. Samsonidze, and G. Dresselhaus, Mater. Sci. Eng. C 23, 129 (2003).

    Article  Google Scholar 

  3. Y.-M. Lin, X. Sun, and M.S. Dresselhaus, Phys. Rev. B 62, 4610 (2000).

    Article  CAS  Google Scholar 

  4. M. S. Dresselhaus, Proceedings of the Conference on the Physics of Semimetals and Narrow Gap Semiconductors (Dallas, 1970).

  5. J.-P. Michenaud and J.-P. Issi, J. Phys. C 5, 3061 (1972).

    Article  CAS  Google Scholar 

  6. J. Heremans and C.M. Thrush, Phys. Rev. B 59, 12579 (1999).

    Article  CAS  Google Scholar 

  7. T.E. Huber and M.J. Graf, Phys. Rev. B 60, 16880 (1999).

    Article  CAS  Google Scholar 

  8. K. Liu, C.L. Chien, and P.C. Searson, Phys. Rev. B 58, 14681 (1998).

    Article  Google Scholar 

  9. Y.-M. Lin, S.B. Cronin, J.Y. Ying, M.S. Dresselhaus, and J.P. Heremans, Appl. Phys. Lett. 76, 3944 (2000).

    Article  CAS  Google Scholar 

  10. A. Nikolaeva, T.E. Huber, D. Gitsu, and L. Konopko, Phys. Rev. B 77, 035422 (2008).

    Article  Google Scholar 

  11. T.W. Cornelius, M.E. Toimil-Molares, R. Neumann, and S. Karim, J. Appl. Phys. 100, 114307 (2006).

    Article  Google Scholar 

  12. S.B. Cronin, Y.-M. Lin, O. Rabin, M.R. Black, J.Y. Ying, M.S. Dresselhaus, P.L. Gai, J.-P. Minet, and J.-P. Issi, Nanotechnology 13, 653 (2002).

    Article  CAS  Google Scholar 

  13. W. Shim, J. Ham, K. Lee, W. Jeung, M. Johnson, and E. Lee, Nano Lett. 9, 18 (2009).

    Article  CAS  Google Scholar 

  14. Y. Hasegawa, Y. Ishikawa, T. Komine, T.E. Huber, A. Suzuki, H. Morita, and H. Shirai, Appl. Phys. Lett. 85, 917 (2004).

    Article  CAS  Google Scholar 

  15. Y. Hasegawa, Y. Ishikawa, H. Morita, T. Komine, H. Shirai, and H. Nakamura, J. Appl. Phys. 97, 083907 (2005).

    Article  Google Scholar 

  16. Y. Hasegawa, H. Nakano, H. Morita, A. Kurokouchi, K. Wada, T. Komine, and H. Nakamura, J. Appl. Phys. 101, 033704 (2007).

    Article  Google Scholar 

  17. Y. Hasegawa, H. Nakano, H. Morita, T. Komine, H. Okumura, and H. Nakamura, J. Appl. Phys. 102, 073701 (2007).

    Article  Google Scholar 

  18. H. Iwasaki, H. Morita, and Y. Hasegawa, Jpn. J. Appl. Phys. 47, 3576 (2008).

    Article  CAS  Google Scholar 

  19. Y. Hasegawa, Y. Ishikawa, H. Shirai, H. Morita, A. Kurokouchi, K. Wada, T. Komine, and H. Nakamura, Rev. Sci. Instrum. 76, 113902 (2005).

    Article  Google Scholar 

  20. Y. Hasegawa, M. Murata, D. Nakamura, T. Komine, T. Taguchi, and S. Nakamura, J. Appl. Phys. 105, 103715 (2009).

    Article  Google Scholar 

  21. Y. Hasegawa, M. Murata, D. Nakamura, and T. Komine, J. Appl. Phys. 106, 063703 (2009).

    Article  Google Scholar 

  22. Y. Hasegawa, M. Murata, D. Nakamura, T. Komine, T. Taguchi, and S. Nakamura, J. Electron. Mater. 38, 944 (2009).

    Article  CAS  Google Scholar 

  23. M. Murata, D. Nakamura, Y. Hasegawa, T. Komine, T. Taguchi, S. Nakamura, V. Jovovic, and J.P. Heremans, Appl. Phys. Lett. 94, 192104 (2009).

    Article  Google Scholar 

  24. M. Murata, D. Nakamura, D. Nakamura, T. Komine, D. Uematsu, S. Nakamura, and T. Taguchi, J. Electron. Mater. 39, 1536 (2010).

    Article  CAS  Google Scholar 

  25. D. Nakamura, M. Murata, D. Nakamura, T. Komine, D. Uematsu, S. Nakamura, and T. Taguchi, J. Electron. Mater. 39, 1960 (2010).

    Article  CAS  Google Scholar 

  26. D. Nakamura, M. Murata, H. Yamamoto, Y. Hasegawa, and T. Komine, J. Appl. Phys. 110, 053702 (2011).

    Article  Google Scholar 

  27. Y. Hasegawa, D. Nakamura, M. Murata, H. Yamamoto, T. Komine, T. Taguchi, and S. Nakamura, J. Electron. Mater. 40, 1005 (2010).

    Article  Google Scholar 

  28. M. Murata, D. Nakamura, Y. Hasegawa, T. Komine, T. Taguchi, S. Nakamura, C.M. Jaworski, V. Jovovic, and J.P. Heremans, J. Appl. Phys. 105, 113706 (2009).

    Article  Google Scholar 

  29. T. Komine, M. Kuraishi, T. Teramoto, R. Sugita, Y. Hasegawa, M. Murata, and D. Nakamura, J. Electron. Mater. 39, 1606 (2010).

    Article  CAS  Google Scholar 

  30. Y. Ichige, T. Matsumoto, T. Komine, R. Sugita, T. Aono, M. Murata, D. Nakamura, and Y. Hasegawa, J. Electron. Mater. 40, 523 (2010).

    Article  Google Scholar 

  31. T. Matsumoto, Y. Ichige, T. Komine, R. Sugita, T. Aono, M. Murata, D. Nakamura, and Y. Hasegawa, J. Electron. Mater. 40, 1260 (2010).

    Article  Google Scholar 

  32. C.G. Gallo, B.S. Chandrasekher, and P.H. Shutter, J. Appl. Phys. 34, 144 (1963).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Murata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murata, M., Yamamoto, H., Tsunemi, F. et al. Four-Wire Resistance Measurements of a Bismuth Nanowire Encased in a Quartz Template Utilizing Focused Ion Beam Processing. J. Electron. Mater. 41, 1442–1449 (2012). https://doi.org/10.1007/s11664-012-1986-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-1986-9

Keywords

Navigation