Skip to main content
Log in

Transport-Coefficient Dependence of Current-Induced Cooling Effect in a Two-Dimensional Electron Gas

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The dependence of the current-induced cooling effect on the electron mobility μ e is explored for a two-dimensional electron gas (2DEG) subjected to a perpendicular magnetic field. We calculate the distributions of the electrochemical potentials and the temperatures under a magnetic field, fully taking account of thermoelectric and thermomagnetic phenomena. Whereas the electrochemical potential and the electric current remain qualitatively unchanged, the temperature distribution exhibits drastic mobility dependence. The lower-mobility system has cold and hot areas at opposite corners, which results from the heat current brought about by the Ettingshausen effect in the vicinity of the adiabatic boundaries. The cooling effect is intensified by an increase in μ e. Intriguingly, the cold and hot areas change places with each other as the mobility μ e is further increased. This is because the heating current on the adiabatic edges due to the Righi–Leduc effect exceeds that due to the Ettingshausen effect in the opposite direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Harman and J.M. Honig, Thermoelectric and Thermomagnetic Effects and Applications (New York: McGraw-Hill, 1967).

    Google Scholar 

  2. V. Zlatic and A.C. Hewson, eds., Properties and Applications of Thermoelectric Materials (Dordrecht: Springer, 2009).

    Google Scholar 

  3. D.M. Rowe, eds., Thermoelectrics Handbook: Macro to Nano (Boca Raton: CRC Taylor and Francis, 2006).

    Google Scholar 

  4. B.L. Gallagher and P.N. Butcher, Handbook on Semiconductors, vol. 1. (Amsterdam: Elsevier, 1992), p. 817.

  5. R. Fletcher, Semicond. Sci. Technol. 14, R1 (1999).

    Article  CAS  Google Scholar 

  6. K. Behnia, M.A. Méasson, and Y. Kopelevich, Phys. Rev. Lett. 98, 166602 (2007).

    Article  Google Scholar 

  7. K. Behnia, L. Balicas, and Y. Kopelevich, Science 317, 1729 (2007).

    Article  CAS  Google Scholar 

  8. A. Endo, Y. Iye, to appear in Proc. 30th Int. Conf. Phys. Semicond. (2011).

  9. N. Hirayama, A. Endo, K. Fujita, Y. Hasegawa, N. Hatano, H. Nakamura, and R. Shirasaki, Comput. Phys. Commun. 182, 90 (2011).

    Article  CAS  Google Scholar 

  10. N. Hirayama, A. Endo, K. Fujita, Y. Hasegawa, N. Hatano, H. Nakamura, R. Shirasaki, and K. Yonemitsu, J. Electron. Mater. 40, 529 (2011).

    Article  CAS  Google Scholar 

  11. H. Okumura, S. Yamaguchi, H. Nakamura, K. Ikeda, and K. Sawada, Proceedings of ICT98: 17th International Conference on Thermoelectrics, 1998 (IEEE, 1998), p. 89. Cond-mat/9805042.

  12. L.D. Landau, E.M. Lifshitz, and L.P. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed. (Oxford: Pergamon, 1984).

    Google Scholar 

  13. T. Harman and J.M. Honig, J. Appl. Phys. 33, 3178 (1962).

    Article  Google Scholar 

  14. H.B. Callen, Thermodynamics (New York: Wiley, 1960).

    Google Scholar 

  15. N. Hirayama, A. Endo, K. Fujita, Y. Hasegawa, N. Hatano, H. Nakamura, and R. Shirasaki, NIFS report NIFS-1016 (2011).

  16. K. Fujita, A. Endo, S. Katsumoto, and Y. Iye, Physica E 42, 1030 (2010).

    Article  CAS  Google Scholar 

  17. J.M. Ziman, Electrons and Phonons (Oxford: Oxford University Press, 1960).

    Google Scholar 

  18. R.F. Wick, J. Appl. Phys. 25, 741 (1954).

    Article  Google Scholar 

  19. R.W. Rendell and S.M. Girvin, Phys. Rev. B 23, 6610 (1981).

    Article  Google Scholar 

  20. J. Wakabayashi and S. Kawaji, J. Phys. Soc. Jpn. 44, 1839 (1978).

    Article  CAS  Google Scholar 

  21. B. Neudecker and K.H. Hoffmann, Solid State Commun. 62, 135 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi Hirayama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirayama, N., Endo, A., Fujita, K. et al. Transport-Coefficient Dependence of Current-Induced Cooling Effect in a Two-Dimensional Electron Gas. J. Electron. Mater. 41, 1535–1539 (2012). https://doi.org/10.1007/s11664-011-1850-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1850-3

Keywords

Navigation