Skip to main content
Log in

Thermoelectric Properties of a 593-nm Individual Bismuth Nanowire Prepared Using a Quartz Template

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

An individual bismuth nanowire sample, 593 nm in diameter and 1.64 mm in length, has been successfully grown using a quartz template. The resistivity and the Seebeck coefficient of the nanowire at 300 K were 1.35 μΩ m and −59 μV/K, respectively, similar to those of a bismuth bulk sample. The temperature dependence of the resistivity was found to decrease with temperature from 300 K to 175 K and then increase with further temperature reduction below 175 K. The absolute value of the Seebeck coefficient decreased with temperature from 300 K to 90 K, and the sign of the Seebeck coefficient changed from negative to positive near 90 K. This result indicated that there was a small amount of contamination in the bismuth. The carrier density was estimated from the resistivity and Seebeck coefficient on the basis of limitation of the mean free path and a two-carrier model, and the observed temperature dependences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).

    Article  CAS  ADS  Google Scholar 

  2. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).

    Article  CAS  ADS  PubMed  Google Scholar 

  3. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  4. C.F. Gallo, B.S. Chandrasekhar, and P.H. Sutter, J. Appl. Phys. 34, 144 (1963).

    Article  CAS  ADS  Google Scholar 

  5. K. Hong, F.Y. Yang, K. Liu, D.H. Reich, P.C. Searson, C.L. Chien, F.F. Balakirev, and G.S. Boebinger, J. Appl. Phys. 85, 6184 (1999).

    Article  CAS  ADS  Google Scholar 

  6. X.F. Wang, J. Zhang, H.Z. Shi, Y.W. Wang, G.W. Meng, X.S. Peng, L.D. Zhang, and J. Fang, J. Appl. Phys. 89, 3847 (2001).

    Article  CAS  ADS  Google Scholar 

  7. J. Heremans, C.M. Thrush, Y.M. Lin, S. Cronin, Z. Zhang, M.S. Dresselhaus, and J.F. Mansfield, Phys. Rev. B 61, 2921 (2000).

    Article  CAS  ADS  Google Scholar 

  8. T.W. Cornelius, M.E. Toimil-Molares, R. Neumann, and S. Karim, J. Appl. Phys. 100, 114307 (2006).

    Article  ADS  Google Scholar 

  9. A. Nikolaeva, T.E. Huber, D. Gitsu, and L. Konopko, Phys. Rev. B 77, 035422 (2008).

    Article  ADS  Google Scholar 

  10. Y. Hasegawa, Y. Ishikawa, T. Komine, T.E. Huber, A. Suzuki, H. Morita, and H. Shirai, Appl. Phys. Lett. 85, 917 (2004).

    Article  CAS  ADS  Google Scholar 

  11. Y. Hasegawa, Y. Ishikawa, H. Morita, T. Komine, H. Shirai, and H. Nakamura, J. Appl. Phys. 97, 083907 (2005).

    Article  ADS  Google Scholar 

  12. Y. Hasegawa, H. Nakano, H. Morita, A. Kurokouchi, K. Wada, T. Komine, and H. Nakamura, J. Appl. Phys. 101, 033704 (2007).

    Article  ADS  Google Scholar 

  13. Y. Hasegawa, H. Nakano, H. Morita, T. Komine, H. Okumura, and H. Nakamura, J. Appl. Phys. 102, 073701 (2007).

    Article  ADS  Google Scholar 

  14. H. Iwasaki, H. Morita, and Y. Hasegawa, Jpn. J. Appl. Phys. 47, 3576 (2008).

    Article  CAS  ADS  Google Scholar 

  15. Y. Hasegawa, M. Murata, D. Nakamura, T. Komine, T. Taguchi, and S. Nakamura, J. Electron. Mater. 38, 944 (2009).

    Article  CAS  ADS  Google Scholar 

  16. Y. Hasegawa, M. Murata, D. Nakamura, T. Komine, T. Taguchi, and S. Nakamura, J. Appl. Phys. 105, 103715 (2009).

    Article  ADS  Google Scholar 

  17. M. Murata, D. Nakamura, Y. Hasegawa, T. Komine, T. Taguchi, S. Nakamura, V. Jovovic, and J.P. Heremans, Appl. Phys. Lett. 94, 192104 (2009).

    Article  ADS  Google Scholar 

  18. M. Murata, D. Nakamura, Y. Hasegawa, T. Komine, T. Taguchi, S. Nakamura, C.M. Jaworski, V. Jovovic, and J.P. Heremans, J. Appl. Phys. 105, 113706 (2009).

    Article  ADS  Google Scholar 

  19. Y. Hasegawa, M. Murata, D. Nakamura, and T. Komine, J. Appl. Phys. 106, 063703 (2009).

    Article  ADS  Google Scholar 

  20. Y. Hasegawa, Y. Ishikawa, H. Shirai, H. Morita, A. Kurokouchi, K. Wada, T. Komine, and H. Nakamura, Rev. Sci. Instrum. 76, 113902 (2005).

    Article  ADS  Google Scholar 

  21. T. Teramoto, T. Komine, S. Yamamoto, M. Kuraishi, R. Sugita, Y. Hasegawa, and H. Nakamura, J. Appl. Phys. 104, 053714 (2008).

    Article  ADS  Google Scholar 

  22. Y. Hasegawa, T. Komine, Y. Ishikawa, A. Suzuki, and H. Shirai, Jpn. J. Appl. Phys., Part 1 43, 35 (2004).

    Article  CAS  Google Scholar 

  23. J. Heremans and O.P. Hansen, J. Phys. C Solid State 12, 3483 (1979).

    Article  CAS  ADS  Google Scholar 

  24. R.T. Isaacson and G.A. Williams, Phys. Rev. 185, 682 (1969).

    Article  ADS  Google Scholar 

  25. R. Hartman, Phys. Rev. 181, 1070 (1969).

    Article  CAS  ADS  Google Scholar 

  26. J.P. Michenaud and J.P. Issi, J. Phys. C Solid State 5, 3061 (1972).

    Article  CAS  ADS  Google Scholar 

  27. G.A. Saunders and Z. Sümengen, P. Roy. Soc. Lond. A Mat. 329, 453 (1972).

    Article  CAS  ADS  Google Scholar 

  28. Y. Hasegawa, Y. Ishikawa, T. Saso, H. Shirai, H. Morita, T. Komine, and H. Nakamura, Physica B 382, 140 (2006).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by a Grant-in-Aid for the Encouragement of Young Scientists from the Japan Society for the Promotion of Science, by the Murata Science Foundation and Research for Promoting Technological Seeds of Japan Science and Technology Agency. This work was performed under the auspices of the National Institute for Fusion Science (NIFS) Collaborative Research (Grant No. NIFS08KYBI007) and NINS’s Creating Innovative Research Fields Project (Grant No. NIFS08KEIN0091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiki Nakamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, D., Murata, M., Hasegawa, Y. et al. Thermoelectric Properties of a 593-nm Individual Bismuth Nanowire Prepared Using a Quartz Template. J. Electron. Mater. 39, 1960–1965 (2010). https://doi.org/10.1007/s11664-009-1045-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-1045-3

Keywords

Navigation