Skip to main content
Log in

Evaluation of Formation and Evolution of Microporosity in Anodic Copper Solidification Processes: Simulation and Experimental Validation

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The current study analyzes the formation and evolution of microporosity during the solidification of anodic cooper. The aim of this study is to develop a thermofluid-formulation including microstructural evolution and to perform experiments to validate some measured variables with the respective numerical predictions. To this end, a set of experiments is carried out in copper testing primary and eutectic phase formation together with porosity evolution. To evaluate the formation of different microstructural phases and porosity, anodic copper (99.80 pct purity, approximately) is poured into different types of molds. The effect of heat extraction on the thermofluid-microstructural response is evaluated using graphite and steel molds to promote different cooling rates. The microporosity depends on the microstructural formation; hence the microstructure needs to be firstly described. The proposed microstructural model takes into account nucleation and grain growth laws based on thermal undercooling together with microstructural evolution. The primary phase evolution model is based on both solute diffusion at the grain scale and the dendrite tip growth kinetics, while the eutectic evolution is assumed proportional to the copper initial composition and eutectic undercooling. The microporosity model accounts for the partial pressures of gases and the solute distribution in the liquid and solid phases. The corresponding numerical formulation is solved in the framework of the finite element method. Finally, the computed temperature, solid, and liquid volumetric fractions, and pressure histories together with the final values for the radius, density, and pore volumetric fraction, are all compared and validated with the experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. R.A. Flinn: Fundamentals of Metal Casting, Addison-Wesley, Reading, 1963, p. 225.

  2. E.G. King, A.D. Mah, and L.B. Pankratz: Thermodynamic Properties of Copper and Its Inorganic Compounds, INCRA Monograph II, Cambridge, 1973.

  3. W.G. Davenport, M. King, M. Schlesinger, and A.K. Biswas, Extractive Metallurgy of Copper, 4th ed., Pergamon Press, Oxford, pp. 247–88, 2002.

  4. D. Askeland: Ciencia e Ingeniería de los Materiales, 3rd ed., Ediciones Paraninfo, S.A., Madrid, pp. 574–624, 1999.

  5. P.D. Lee, A. Chirazi, and D.J. See (2001) J. Light Met., 1, 1-15.

    Article  Google Scholar 

  6. K. Kubo and R.D. Pehlke: Metall. Mater. Trans., 1985, vol. 16B, pp. 359–66.

  7. M.C. Flemmings and T.S. Piwonka: AIME, Vol. 236, pp. 1157-65, 1966.

    Google Scholar 

  8. E. Niyama, T. Uchida, M. Morikawa and S. Saito: AFS Int. J. Cast. Met., 7(3), pp. 52-63, 1982.

    Google Scholar 

  9. P.D. Lee and J.D. Hunt (1997) Acta Mater., 45, 4155-69.

    Article  CAS  Google Scholar 

  10. K.D. Li and E. Chang (2004) Acta Mater., 52, pp. 219-31.

    Article  CAS  Google Scholar 

  11. R.C. Atwood and P.D. Lee: Acta Mater. Vol. 51, pp. 5447-66, 2003.

    Article  CAS  Google Scholar 

  12. R.C. Atwood, S. Sridhar, W. Zhang and P.D. Lee (2000) Acta Mater., 48, pp. 405-17.

    Article  CAS  Google Scholar 

  13. P.K. Sung, D.R. Poirier and S.D. Felicelli: Model. Simul. Mater. Sci. Eng., Vol. 10, pp. 551-68, 2002.

    Article  CAS  Google Scholar 

  14. A.P. Boeira, I.L. Ferreira and A. García: Mater. Sci. Eng. A, Vol. 435-436, pp. 150-57, 2006.

    Google Scholar 

  15. V.R. Voller, Can. Metall. Q., Vol. 37, pp. 169–77, 1998.

    Article  CAS  Google Scholar 

  16. Ch. Pequet, M. Gremaud and M. Rappaz: Metall. Mater. Trans. A, Vol. 33A, pp. 2095-106, 2002.

    Article  CAS  Google Scholar 

  17. M.L.N.M. Melo, E.M.S. Rizzo and R.G. Santos: J. Mater. Sci. Vol. 40, pp. 1599–609, 2005.

    Article  CAS  Google Scholar 

  18. J. Zhu, S. Cockcroft, and D. Maijer: Metall. Mater. Trans. A, Vol. 37A, pp. 1075-85, 2006.

    Article  CAS  Google Scholar 

  19. L. Yao, S. Cockcroft, C. Reilly, and J.D. Zhu: Metall. Mater. Trans. A, Vol. 43A, pp. 1004-1016, 2012.

    Article  Google Scholar 

  20. J. Guangrui, L. Yanxiang and L. Yuan: Metall. Mater. Trans. A, Vol. 41A, pp. 3405-411, 2010.

    Google Scholar 

  21. M. Flemmings: Solidification Processing, McGraw-Hill, New York, pp. 203–210, 214–262, 1974.

  22. J.F. Wallace and R.J. Kissling: Foundry, Part 1, 1962, pp. 36–39; Part 2, 1963, pp. 64–68.

  23. A.J. Phillips: Metall. Trans. Vol. 4, pp. 1935-43, 1973.

    Article  CAS  Google Scholar 

  24. J.P. Neumann, T. Zhong and Y.A. Chang, Bull. Alloy Phase Diagr., 5(2), pp. 141-44, 1984.

    Article  CAS  Google Scholar 

  25. O.M. Barabash and Yu. N. Koval, Crystal Structures of Metals and Alloys, Naukova Dumka, Kiev, pp. 211-12, 1986.

    Google Scholar 

  26. D.J. Chakrabarti and D.E. Laughlin, Bull. Alloy Phase Diagr. 4, pp. 254-70, 1983.

    Article  Google Scholar 

  27. V. Voller, A. Brent and C. Prakash: Int. J. Heat Mass Transf., Vol. 32(9), pp. 1719-31, 1989.

    Article  CAS  Google Scholar 

  28. M.B. Bever and C.F. Floe (1946) Trans. AIME, 166, 128-41.

    Google Scholar 

  29. C. J. Smithels: “Gases in Metals”, Chapman and Hall Ltd., London, 1937.

    Google Scholar 

  30. J. Romero, D. Celentano and M. Cruchaga (2011) Metall. Mater. Trans. B, Vol. 42B, pp. 612-31.

    Article  Google Scholar 

  31. M. Cruchaga, D. Celentano and R. Lewis: Int. J. Numer. Methods Heat Fluid Flow, 14, pp. 167-86, 2004.

    Article  Google Scholar 

  32. P.D. Lee, J.D. Hunt (2001) Acta Mater., 49, pp. 1383-98.

    Article  CAS  Google Scholar 

  33. J. Dantzig: Int. J. Numer. Methods Eng., Vol. 28, pp. 1769-85, 1989.

    Article  Google Scholar 

  34. A. Brent, V. Voller and K. Reid: Numer. Heat Transf., 13, pp. 297-318, 1988.

    Google Scholar 

  35. C. Beckermann and R. Viskanta: Int. J. Heat Mass Transf., 31(1), pp. 35-46, 1988.

    Article  CAS  Google Scholar 

  36. W. Bennon and F. Incropera: Int. J. Heat Mass Transf., Vol. 30(10), pp. 2161-70, 1987.

    Article  CAS  Google Scholar 

  37. D. Celentano and M. Cruchaga: Metall. Mater. Trans. B, Vol. 30B, pp. 731-44, 1999.

    Article  CAS  Google Scholar 

  38. O. Kubaschewski, E.Ll. Evans, and C.B. Alcock: Metallurgical Thermochemistry, Pergamon Press, Oxford, 1967.

  39. E. Kato, H. Veno and T. Orimo: Trans. JIM, Vol. 11, pp. 351-58, 1970.

    Google Scholar 

  40. N.P. Allen and T. Hewitt: J. Inst. Met., Vol. 51, pp. 257-76, 1933.

    Google Scholar 

  41. K. Sano and H. Sakao: Univ. Mem. Fac. Eng. Vol. 8, pp. 137-63, 1956.

    CAS  Google Scholar 

  42. R.P. Singh and D.R. Heldman (1984) Introduction to Food Engineering. Academic Press, San Diego, p. 305.

    Google Scholar 

  43. R.P. Singh and D.R. Heldman (1993) Introduction to Food Engineering. Academic Press, San Diego, p. 499.

    Google Scholar 

  44. D. Gaskell (1981) Introduction to Metallurgical Thermodynamics, 2nd Ed., McGraw-Hill, New York, pp. 113–24.

    Google Scholar 

  45. Goodfellow: Metals, Alloys, Compounds, Ceramics, Polymers & Composites, Catalogue-1993/1994.

  46. E. Gebhardt and K. Kostlin (1952) Z. Metallkd. 43, p. 292.

    CAS  Google Scholar 

  47. ASM Ready Reference: Thermal Properties of Metals, Product code 06702G.

  48. Graphite Electrodes Catalogue for Electrical Furnaces IGRI, Comercial Waldecker Limitada, Santiago.

  49. R.W. Powell, C.Y. Ho, and P.E. Liley: Thermal Conductivity of Selected Materials, National Standard Reference Data Series, National Bureau of Standards—8, Purdue University, 1966.

  50. Empresa Nacional de Minería ENAMI-CHILE: Especifications for copper anode quality produced in HVL Copper Smelter, 2010.

Download references

Acknowledgments

The support provided by CONICYT and FONDECYT (Project No. 1095028) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Sebastian Romero.

Additional information

Manuscript submitted June 12, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero, J.S., Cruchaga, M.A. & Celentano, D.J. Evaluation of Formation and Evolution of Microporosity in Anodic Copper Solidification Processes: Simulation and Experimental Validation. Metall Mater Trans B 44, 624–652 (2013). https://doi.org/10.1007/s11663-013-9815-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-9815-y

Keywords

Navigation