Skip to main content
Log in

Design of an Eta-Phase Precipitation-Hardenable Nickel-Based Alloy with the Potential for Improved Creep Strength Above 1023 K (750 °C)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In a number of nickel-based superalloy systems strengthened by gamma prime (γ′), eta-phase (Ni3Ti, η) forms during prolonged high-temperature exposure, but its effect on mechanical properties is not well characterized. Using thermodynamic modeling and design-of-experiments techniques, three modifications of the nickel-based superalloy Nimonic (Nimonic® is a trademark of Special Metals Corporation group of companies.) 263 were identified that yield increased volume fractions of the eta-phase (Ni3Ti, η) at temperatures above 1023 K (750 °C). Volume fractions of η-phase were evaluated for each alloy and heat-treatment condition using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. Compared to Nimonic 263, small additions of V and Ta were found to increase the volume fraction of η-phase above 1023 K (750 °C) from approximately 5 pct to above 15 pct, thus providing a route for future mechanical behavior experimental studies, which was not in the scope of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Thermo-Calc® is a registered of Thermo-Calc Software, Norra Stationsgatan, Sweden.

  2. MINITAB® and all other trademarks and logos for the Company’s products and services are the exclusive property of Minitab Inc. All other marks referenced remain the property of their respective owners. See minitab.com for more information.

References

  1. J.P. Shingledecker and I.G. Wright: Proceedings to the 8th Liege Conference on Materials for Advanced Power Engineering 2006, Forschungszentrum Jülich GmbH, 2006, pp. 107–120.

  2. R. Viswananthan, J.F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, R. Purgert. J. Mater. Eng. Perform. Vol. 14(3) 2005, 281–92.

    Article  Google Scholar 

  3. J.P. Shingledecker, G.M. Pharr: Metall. Mater. Trans. A., Vol. 43 (2012). 1902–10. doi:10.1007/s11661-011-1013-4.

    Article  Google Scholar 

  4. J.P. Shingledecker, N.D. Evans, G.M. Pharr: Mater. Sci. Eng. A. 578 (2013) 277–86. doi:10.1016/j.msea.2013.04.087.

    Article  Google Scholar 

  5. N.D Evans, P.J. Maziasz, R.W. Swindeman, G.D. Smith (2004). Scripta Mater. 51: 503–07.

    Article  Google Scholar 

  6. J.C. Zhao, V. Ravikumar, A.M. Beltran (2001) Metall. Mater. Trans. A 32A: 1271–82.

    Article  Google Scholar 

  7. C.T. Sims, N. S. Stoloff, W.C. Hagel (1987) Superalloys II: High-Temperature Materials for Aerospace and Industrial Power. Wiley, New York

    Google Scholar 

  8. M.J. Donachie (1984). Superalloys: A Technical Guide. Metals Park, Ohio, American Society for Metals.

    Google Scholar 

  9. R.C. Ecob, J. V. Bee, B. Ralph (1979) J. Microsc. 161: 141–50.

    Article  Google Scholar 

  10. H. Sugimura, Y. Kaneno, T. Takasugi (2010). Mater. Trans. 51(1): 72–77.

    Article  Google Scholar 

  11. H. Sugimura, Y. Kaneno, T. Takasugi (2011). “Alloying Behavior of Ni3M-Type Compounds with D0a Structure.” Materials Transactions 52 (4): 667–71.

    Article  Google Scholar 

  12. S. Asgari, R. Sharghi-Moshtaghin, M. Sadegh-Ahmadi, P. Pirouz. (2013). Philosophical Magazine 93(10-12): 1351–70.

    Article  Google Scholar 

  13. K. Tomihisa, Y. Kaneno, T. Takasugi (2002). Intermetallics 10: 247–54.

    Article  Google Scholar 

  14. W. Soga, Y. Kaneno, T. Takasugi (2006) Intermetallics 14: 170–79.

    Article  Google Scholar 

  15. R.E. Watson, L.H. Bennett (1978) Phys. Rev. B 18(12): 6439–49.

    Article  Google Scholar 

  16. B.D. Cullity, S.R. Stock (2001). Elements of X-Ray Diffraction. Upper Saddle River, Prentice Hall, NJ.

    Google Scholar 

  17. G.F. Vander Voort (1984). Metallography, Principles and Practice, ASM International, Metals Park.

    Google Scholar 

  18. S. Asgari (2006). Metall. Mater. Trans. A. 37A: 2051–57.

    Article  Google Scholar 

  19. G.V.S. Murthy, S. Ghosh, M. Das, G. Das, R.N. Ghosh (2007) Mater. Sci. Eng. A. 488: 298-405.

    Google Scholar 

Download references

Acknowledgments

Bruce Pint and Michael Santella of Oak Ridge National Laboratory are acknowledged for their support in melting the alloy compositions. The support of EPRI’s Technology Innovation Program on Advanced Materials, Program manager David Gandy, and initial research support from Peter Enz, Bryan Turner, and Ben Wittbrodt, is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Wong.

Additional information

Manuscript submitted January 29, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, M.J., Sanders, P.G., Shingledecker, J.P. et al. Design of an Eta-Phase Precipitation-Hardenable Nickel-Based Alloy with the Potential for Improved Creep Strength Above 1023 K (750 °C). Metall Mater Trans A 46, 2947–2955 (2015). https://doi.org/10.1007/s11661-015-2898-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2898-0

Keywords

Navigation