Skip to main content
Log in

Effect of High Tensile Strain Rate on the Evolution of Microstructure in Fe-Mn-C-Al Twinning-Induced Plasticity (TWIP) Steel

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fe-17.8Mn-0.52C-0.5Al TWIP steel has been investigated under high-strain rate conditions. Twinning along with stacking faults and high dislocation densities in the austenite matrix has been evaluated by X-ray diffraction line profile analysis and transmission electron microscopy. The samples strained at 100 s−1 show a gradient in the evolution of the dislocation density along the gage length except the fracture end where the density shows a decrease. In case of the samples strained at 1 s−1, the evolution of density shows attainment of a near-saturation stage. Electron backscatter diffraction analysis shows that the decrease in the dislocation density as well as near-saturation stage is due to dynamic recovery as well as dynamic recrystallization at region near the fracture end. The dynamically recrystallized grains are related to the deformed matrix through twin relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. J.A.Venebles, Philos Mag, 7 (1962) 35–44.

    Article  Google Scholar 

  2. J.W.Christian, S.Mahajan, Prog. Mater. Sci., 39 (1995) 1–157.

    Article  Google Scholar 

  3. G.F.Bolling, R.H.Richman, Acta Metall., 18 (1970) 673–81.

    Article  Google Scholar 

  4. W.Koester, M.O.Speidel, Z. Metallk, 9 (1965) 709–45.

    Google Scholar 

  5. R.E.Reed-Hill, Inhomogeneity of plastic deformation, Metals Park (OH): ASM, 1973, 285.

    Google Scholar 

  6. A. Saeed-Akbari, J. Imlau, U. Prahl, W. Bleck, Metall. Mater. Trans A, 40A, 2009, 3076–90.

    Article  Google Scholar 

  7. L.Balogh, G.Ribárik, T.Ungár, J. Appl. Phys., 100 (2006) 023512.

    Article  Google Scholar 

  8. M.A. Krivoglaz, Theory of X-Ray and Thermal Neutron Scattering by Real Crystals, Plenum Press, New York (1969).

    Google Scholar 

  9. M.A. Krivoglaz,K.P. Ryaboshapka, Fizika Metall., 15(1963) 18–31.

    Google Scholar 

  10. M. Wilkens: in Fundamental Aspects of Dislocation Theory, Vol. II, J.A. Simmons, R. de Witand, and R. Bullough, eds., Nat. Bur. Stand. (US) Spec. Publ. No. 317, Washington, DC, 1970, pp. 1195–1221.

  11. M. Wilkens: Proceedings of the International Conference on the Strength of Metals and Alloys (ICSMA8), Tampere, Finland, P.O. Kettunen, T.K. Lepistö, and M.E. Lehtonen, eds., Pergamon Press, Oxford, 1988, pp. 47–152.

  12. I. Groma, Phys.Rev.B, 57 (1998) 7535–42.

    Article  Google Scholar 

  13. I. Groma, G. Monnet, J. Appl. Cryst., 35 (2002) 589–93.

    Article  Google Scholar 

  14. A.R. Stokes, A.J.C. Wilson, Proc. Cambridge Philos. Soc. 1942, 38, 313–22.

    Article  Google Scholar 

  15. A.R. Stokes, A.J.C. Wilson, Proc. Phys. Soc. 1944, 56, 174–81.

    Article  Google Scholar 

  16. B.E. Warren, B.L. Averbach, J.Appl.Phys., 23 (1952) 497–98.

    Article  Google Scholar 

  17. B.E. Warren: in X-Ray Diffraction, M. Cohen, ed., Addison-Wesley Publishing Co, Inc., Reading, MA, 1969, pp. 275–98.

  18. H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, P. Jacques, Acta Mater., 58 (2010) 2464–76.

    Article  Google Scholar 

  19. A. Borbely, J. Dragomir-Cernatescu, G. Ribarik, and T. Ungar, J. Appl. Cryst. 36, (2003) 160–62.

    Article  Google Scholar 

  20. T. Ungar, H. Mughrabi, D. Rönnpagel and M.Wilkens, Acta Metall. 32 (1984) 333–42.

    Article  Google Scholar 

  21. O.Bouaziz, S.Allain, C.Scott, Scripta Mater., 58 (2008) 484–87.

    Article  Google Scholar 

  22. J.G.Sevillano. Scripta Mater., 60 (2009) 336–39.

    Article  Google Scholar 

  23. Y.N. Dastur, W.C. Leslie, Metall. Trans. A, 12A (1981) 749–59.

    Article  Google Scholar 

  24. J.S. Jeong, Y.M. Koo, I.K. Jeong, S.K. Kim, S.K. Kwon, Mater Sci Eng A 530 (2011) 128–34.

    Article  Google Scholar 

  25. H.R.Z. Sandim, J.F.C. Lins, A.L. Pinto, A.F. Padilha, Materials Science and Engineering: A, Volume 354, Issues 1–2, 15 August 2003, Pages 217–28.

    Article  Google Scholar 

  26. S. Wronski, J. Tarasiuk, B. Bacroix, K. Wierzbanowski, H. Paul, Materials Characterization, Volume 78, April 2013, Pages 60–68.

    Article  Google Scholar 

Download references

Authors (TD and SGC) are grateful to Indian Academy of Sciences, Bangalore for their support through Summer Fellowship as well as AvH Foundation, Germany, respectively. Authors (TD and SGC) acknowledge Prof. Tamas Ungar, Hungary for constant discussion during the evaluation of dislocation density. The authors KD and WB thank the DFG (Deutsche Forschungsgemeinschaft) for financial support within the collaborative research centre SFB 761.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Ghosh Chowdhury.

Additional information

Manuscript submitted August 15, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, T., Saha, R., Bera, S. et al. Effect of High Tensile Strain Rate on the Evolution of Microstructure in Fe-Mn-C-Al Twinning-Induced Plasticity (TWIP) Steel. Metall Mater Trans A 46, 6–11 (2015). https://doi.org/10.1007/s11661-014-2654-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2654-x

Keywords

Navigation