Skip to main content
Log in

Induction Hardening vs Conventional Hardening of a Heat Treatable Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study focuses on the comparison of mechanical and microstructural properties of induction and conventionally heat-treated steels in the as-quenched state. The investigated steel is a heat treatable 42CrMo4 steel. In order to characterize the mechanical properties, tensile tests and Vickers hardness tests are performed. The yield strength and hardness of the induction hardened condition turn out to be slightly lower compared to the conventionally hardened one. Light optical and scanning electron microscopy show no differences in the martensitic structure of the induction and conventionally hardened condition. However, electron back scatter diffraction investigations reveal a smaller block size within the conventionally hardened specimen. Carbon mappings by electron probe micro analysis show a homogenous carbon concentration in the conventionally hardened and a non-uniform distribution in the induction-hardened case. The segregation of the carbon exhibits line-type features in the induction hardened condition, lowering the total amount of carbon in the matrix. Therefore, the carbon content in the matrix of the conventionally hardened condition is slightly higher, which causes a smaller block size. The smaller block size is believed to be the reason for the higher hardness and yield strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.T. Ahn, D.S. Kim, and W.J. Nam: J. Mater. Process. Technol. 2005, vol. 160, pp. 54–58

    Article  Google Scholar 

  2. J.B. Lee, N. Kang, J.T. Park, S.-T. Ahn, Y.-D.Park, I.-D.Choi, K.-R.Kim, and K.-M. Cho: Mater. Chem. Phys., 2011, vol. 129, pp. 365–70.

    Article  Google Scholar 

  3. D. Dengel: Haerterei Tech. Mitteilungen, 1984, vol. 39, pp. 182–93.

    Google Scholar 

  4. T. Furuhara, K. Kobayashi, and T. Maki: ISIJ Int., 2004, vol. 44, pp. 1937–44.

  5. S. Murphy and J.H. Woodhead: Metall. Trans., 1972, vol. 3, pp. 727–35.

    Article  Google Scholar 

  6. C. Revilla, P. Uranga, B. Lòpez, and J.M. Rodriguez-Ibabe: AIST Steel Prop. Appl. Conf. Proc. Comb. with MS T’12, Mater. Sci. Technol. 2012, 2012, pp. 267–74.

  7. K. Steineder and R. Schneider: HTM J. Heat Treat. Mater., 2013, vol. 68, pp. 77–84.

    Article  Google Scholar 

  8. H. Leitner, D. Caliskanoglu, and H. Clemens: BHM Berg- Huettenmaenn. Monatsh., 2004, vol. 149, pp. 172–75.

    Google Scholar 

  9. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino: Acta Mater., 2006, vol. 54, pp. 1279–88.

    Article  Google Scholar 

  10. S. Morito, H. Yoshida, T. Maki, and X. Huang: Mater. Sci. Eng., A, 2006, vols. 237–40, pp. 237–40.

    Article  Google Scholar 

  11. E. Schacht and J. Richter: Prakt. Metallogr., 1998, vol. 35, pp. 384—95.

    Google Scholar 

  12. H. Matsuda, R. Mizuno, Y. Funakawa, K. Seto, S. Matsuoka, and Y. Tanaka: J. Alloys Compd., 2013, vol. 577, pp. S661-67.

    Article  Google Scholar 

  13. G. Speichand and W. Leslie: Metall. Trans. A, 1972, vol. 3, pp. 1043–53.

    Article  Google Scholar 

  14. J. Wu, P.J. Wray, C.I. Garcia, M. Hua, and A.J. Deardo: ISIJ Int., 2005, vol. 45, pp. 254–62.

  15. F.J. Humphreys: J. Mater. Sci., 2001, vol. 6, pp. 3833–54.

  16. S. Morito, H. Saito, T. Ogawa, T. Furuhara, and T. Maki: ISIJ Int., 2005, vol. 45, pp. 91–94.

  17. G. Miyamoto, N. Iwata, N. Takayama, and T. Furuhara: J. Alloys Compd., 2013, vol. 577, pp. S528–32.

    Article  Google Scholar 

  18. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki: Acta Mater., 2003, vol. 51, pp. 1789–99.

    Article  Google Scholar 

  19. Y. Tomita and K. Okabayashi: Metall. Trans. A, 1986, vol. 17, pp. 1203–09.

    Article  Google Scholar 

  20. T. Swarrand and G. Krauss: Metall. Trans. A, 1976, vol. 7, pp. 41–48.

    Article  Google Scholar 

  21. C. Zhang, Q. Wang, J. Ren, R. Li, M. Wang, F. Zhang, and K. Sun: Mater. Sci. Eng., A, 2012, vol. 534, pp. 339–46.

    Article  Google Scholar 

  22. F. Foroozmehr, A. Najafizadeh, and A. Shafyei: Mater. Sci. Eng., A, 2011, vol. 528, pp. 5754–58.

    Article  Google Scholar 

  23. K.C. Smith, J.P. Wise, and G. Krauss: Prog. Heat Treat. Surf. Eng., 2000, pp. 379–86.

  24. K.D. Clarke, C.J. Van Tyne, C.J. Vigil, and R.E. Hackenberg: J. Mater. Eng. Perform., 2011, vol. 20, pp. 161–68.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support by the Austrian Federal Ministry of Economy, Family and Youth and the National Foundation for Research, Technology and Development is gratefully acknowledged. The authors want to thank Tomasz Wojcik for his help regarding the TEM investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Sackl.

Additional information

Manuscript submitted March 3, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sackl, S., Leitner, H., Zuber, M. et al. Induction Hardening vs Conventional Hardening of a Heat Treatable Steel. Metall Mater Trans A 45, 5657–5666 (2014). https://doi.org/10.1007/s11661-014-2518-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2518-4

Keywords

Navigation