Skip to main content

Advertisement

Log in

Thermal Stability of Nanocrystalline Copper Alloyed with Antimony

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nanocrystalline copper (Cu) was generated by cryogenic, high-energy ball milling. Antimony (Sb) was added to investigate its utility in stabilizing the grain structure during annealing up to a maximum temperature of 1073 K (800 °C). When alloyed with Sb in quantities up to 1 at. pct, thermal stability was maintained up to 673 K (400 °C). Cu and Sb have very different molar volumes which can drive segregation of the solute due to the elastic strain energy and hence stabilize the grain size by reducing grain boundary energy. The elastic mismatch of Sb in Cu is calculated to be quite large (113 kJ/mol) when molar volume is used, but when an equivalent equation using atomic radius is applied, the driving force is nearly an order of magnitude lower (~12 kJ/mol). The low elastic mismatch is corroborated by the large equilibrium solubility of Sb in Cu. The results for the Cu-Sb system are compared to the nanocrystalline Ni-W system and the large amount of equilibrium solubility of the solute in both cases is thought to hinder thermal stabilization since segregation is not strongly favored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.K. Rajgarhia, A. Saxena, D.E. Spearot, K.T. Hartwig, K.L. Moore, E.A. Kenik, and H. Meyer: J. Mater. Sci., 2010, vol. 45, pp. 6707–18.

    Article  CAS  Google Scholar 

  2. R.K. Rajgarhia, D.E. Spearot, and A. Saxena: J. Mater. Res., 2010, vol. 25, pp. 411–21.

    Article  CAS  Google Scholar 

  3. R.K. Rajgarhia, D.E. Spearot, and A. Saxena: JOM, 2010, vol. 62, pp. 70–74.

    Article  CAS  Google Scholar 

  4. W.A. Rachinger: J. Sci. Instrum., 1948, vol. 25, p. 254.

    Article  Google Scholar 

  5. B.D. Cullity and S.R. Stock: Elements of X-Ray Diffraction 2001, Prentice Hall, Upper Saddle River, 2001, p. 170.

    Google Scholar 

  6. W.J. Poole, M.F. Ashby, and N.A. Fleck: Scripta Mater., 1996, vol. 34, pp. 559–64.

    Article  CAS  Google Scholar 

  7. J. Weissmuller: J. Mater. Res., 1994, vol. 9, pp. 4–7.

    Article  Google Scholar 

  8. P. Wynblatt and R.C. Ku: Surf. Sci., 1977, vol. 65, pp. 511–31.

    Article  CAS  Google Scholar 

  9. F. Liu and R. Kirchheim: Scripta Mater., 2004, vol. 51, pp. 521–25.

    Article  CAS  Google Scholar 

  10. J.R. Trelewicz and C.A. Schuh: Phys. Rev. B, 2009, vol. 79, pp. 1–13.

    Article  Google Scholar 

  11. X.J. Liu, C.P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida: J. Phase Equilib., 2000, vol. 21, pp. 432–42.

    Article  CAS  Google Scholar 

  12. M.A. Atwater, H. Bahmanpour, R.O. Scattergood, and C.C. Koch: J. Mater. Sci., 2013, vol. 48, pp. 220–26.

    Article  CAS  Google Scholar 

  13. M.A. Atwater, R.O. Scattergood, and C.C. Koch: Mater. Sci. Eng. A, 2013, vol. 559, pp. 250–56.

    Article  CAS  Google Scholar 

  14. E. Botcharova, J. Freudenberger, and L. Schultz: J. Mater. Sci., 2004, vol. 39, 5287–90.

    Article  CAS  Google Scholar 

  15. X. Zhang, N.Q. Vo, P. Bellon, and R.S. Averback: Acta Mater., 2011, vol. 59, pp. 5332–41.

    Article  CAS  Google Scholar 

  16. S. Mula, H. Bahmanpour, S. Mala, P.C. Kang, M. Atwater, W. Jian, R.O. Scattergood, and C.C. Koch: Mater. Sci. Eng. A, 2012, vol. 539, pp. 330–36.

    Article  CAS  Google Scholar 

  17. N.Q. Vo, S.W. Chee, D. Schwen, X. Zhang, P. Bellon, and R.S. Averback: Scripta Mater., 2010, vol. 63, pp. 929–32.

    Article  CAS  Google Scholar 

  18. A.R. Miedema, P.F.d. Chatel, and F.R.d. Boer: Physica B, 1980, vol. 100, pp. 1–28.

  19. L. Vitos, A.V. Ruban, H.L. Skriver, J. Kollar: Surf. Sci., 1998, vol. 411, pp. 186–202.

    Article  CAS  Google Scholar 

  20. J. Friedel: Adv. Phys., 1954, vol. 3, pp. 446–507.

    Article  Google Scholar 

  21. J.D. Eshelby: Philos. Trans. R. Soc. Lond. A, 1951, vol. 244, pp. 87–112.

    Article  Google Scholar 

  22. C.N. Singman: J. Chem. Educ., 1984, vol. 61, pp. 137–42.

    Article  CAS  Google Scholar 

  23. P. Shewmon: Diffusion in Solids, 2 ed., The Minerals, Metals & Materials Society, Warrendale, PA, 1989.

    Google Scholar 

  24. H. Okamoto: J. Phase Equilib. Diffus., 2008, vol. 29, p. 290.

    Article  CAS  Google Scholar 

  25. A.J. Detor, M.K. Miller, and C.A. Schuh: Philos. Mag., 2006, vol. 86, pp. 4459–75.

    Article  CAS  Google Scholar 

  26. A.J. Detor and C.A. Schuh: J. Mater. Res., 2007, vol. 22, pp. 3233–48.

    Article  CAS  Google Scholar 

  27. T.J. Rupert, J.R. Trelewicz, and C.A. Schuh: J. Mater. Res., 2012, vol. 27, pp. 1285–94.

    Article  CAS  Google Scholar 

  28. T. Ziebell and C.A. Schuh: J. Mater. Res., 2012, vol. 27, pp. 1271–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the support of this research by the Office of Naval Research under grant number N00014-10-1-0168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Atwater.

Additional information

Manuscript submitted February 16, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atwater, M.A., Mula, S., Scattergood, R.O. et al. Thermal Stability of Nanocrystalline Copper Alloyed with Antimony. Metall Mater Trans A 44, 5611–5616 (2013). https://doi.org/10.1007/s11661-013-1891-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1891-8

Keywords

Navigation