Skip to main content
Log in

Fabrication of W@Cu composite powders by direct electroless plating using a dripping method

  • Metallic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A direct electroless copper (Cu) coating on tungsten powders method requiring no surface treatment or stabilizing agent and using glyoxylic acid (C2H2O3) as a reducing agent was reported. The effects of copper sulfate concentration and the pH of the plating solution on the properties of the prepared W@Cu composite powders were assessed. The content of Cu in the composite powders was controlled by adjusting the concentration of copper sulfate in the electroless plating solution. A uniform, dense, and consistent Cu coating was obtained under the established optimum conditions (flow rate of C2H2O3 = 5.01 mL/min, solution pH = 12.25 and reaction temperature 45.35 °C) by using central composite design method. In addition, the crystalline Cu coating was evenly dispersed within the W@Cu composite powders and Cu element in the coating existed as Cu0. The formation mechanism for the W@Cu composite powders by electroless plating in the absence of surface treatment and stabilizing agent was also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HO PW, Li QF, Fuh JYH. Evaluation of W-Cu Metal Matrix Composites Produced by Powder Injection Molding and Liquid Infiltration[J]. Mater. Sci. Eng., A, 2008, 485:657–663

    Article  Google Scholar 

  2. YOON ES, LEE JS, OH ST, et al. Microstructure and Sintering Behavior of W-Cu Nanocomposite Powder Produced by Thermo-Chemical Process[J]. Int. J. Refract. Met. Hard Mater., 2002, 20:201–206

    Article  CAS  Google Scholar 

  3. HONG SH, KIM BK. Fabrication of W-20wt% Cu Composite Nanopowder and Sintered Alloy with High Thermal Conductivity[J]. Mater. Lett., 2003, 57:2761–2767

    Article  CAS  Google Scholar 

  4. RYU SS, KIM YD, MOON IH. Dilatometric Analysis on the Sintering Behavior of Nanocrystalline W-Cu Prepared by Mechanical Alloying[J]. J. Alloys Compd., 2002, 335: 233–240

    Article  CAS  Google Scholar 

  5. DORÉ F, LAY S, N EUSTATHOPOULOS, et al. Segregation of Fe during the Sintering of Doped W-Cu Alloys[J]. Scripta Mater., 2003, 49: 237–242

    Article  Google Scholar 

  6. KIM DG, LEE KW, OH ST, et al. Preparation of W-Cu Nanocom-posite Powder by Hydrogen-reduction of Ball-milled W and CuO Powder Mixture[J]. Mater. Lett., 2004, 58: 1 199–1 203

    CAS  Google Scholar 

  7. CHENG JG, LEI CP, XIONG E, et al. Preparation and Characterization of W-Cu Nanopowders by a Homogeneous Precipitation Process[J]. J. Alloys Compd., 2006, 421: 146–150

    Article  CAS  Google Scholar 

  8. CHENG JG, SONG P, GONG YF, et al. Fabrication and Characterization of W-15Cu Composite Powders by A Novel Mechanochemical Process[J]. Mater. Sci. Eng., A, 2008, 488: 453–457

    Article  Google Scholar 

  9. DORÉ F, MARTIN CL, ALLIBERT CH. Apparent Viscosity of W-Cu Powder Compacts during Sintering[J]. Mater. Sci. Eng., A, 2004, 383: 390–398

    Article  Google Scholar 

  10. LI YP, QU XH, ZHENG ZS, LEI CM, et al. Properties of W-Cu Composite Powder Produced by a Thermo-mechanical Method[J]. Int. J. Refract. Met. Hard Mater., 2003, 21: 259–264

    Article  CAS  Google Scholar 

  11. YUTAKA H, HIDEAKI H, TAKESHI I. Deformation Behavior at Room Temperature of W-80vol%Cu Composite[J]. Int. J. Refract. Met. Hard Mater., 2004, 22: 87–93

    Article  Google Scholar 

  12. LI DR, LIU ZY, YU Y, et al. Research on the Densification of W-40wt%Cu by Liquid Sintering and Hot-hydrostatic Extrusion[J]. Int. J. Refract. Met. Hard Mater., 2008, 26: 286–289

    Article  CAS  Google Scholar 

  13. Liu BB, Xie JX, Qu XH. Fabrication of W-Cu Functionally Graded Materials with High Density by Particle Size Adjustment and Solid State hot Press[J]. Compos. Sci. Technol., 2008: 1 539–1 547

    Google Scholar 

  14. Luo SD, Yi JH, Guo YL, et al. Microwave Sintering W-Cu Composites: Analyses of Densification and Microstructural Homogenization[J]. J. Alloys Compd., 2009, 473:5–9

    Article  Google Scholar 

  15. Ibrahim A, Abdallah M, Mostafa SF, Abousree Hegazy A. An Experimental Investigation on the W-Cu Composites[J]. Mater. Des., 2009, 30: 1 398–1 403

    Article  CAS  Google Scholar 

  16. Li DR, Liu ZY, Yu Y, et al. The Influence of Mechanical Milling on the Properties of W-40wt%Cu Composite Produced by Hotextrusion[J]. J. Alloys Compd., 2008, 462: 94–98

    Article  CAS  Google Scholar 

  17. Rape A, Chanthapan S, Singh J, et al. Engineered Chemistry of Cu-W Composites Sintered by Field-assisted Sintering Technology for Heat Sink Applications[J]. J. Mater. Sci., 2011, 46: 94–100

    Article  CAS  Google Scholar 

  18. Pintsuk G, Smid I, DÖRING JE, HOHENAUER W, LINKE J. Fabrication and Characterization of Vacuum Plasma Sprayed W/Cucomposites for Extreme Thermal Conditions[J]. J. Mater. Sci., 2007, 42: 30–39

    Article  CAS  Google Scholar 

  19. Kim YD, OH NL, OH ST, MOON IH. Thermal Conductivity of W-Cu Composites at Various Temperatures[J]. Mater. Lett., 2001, 51: 420–424

    Article  CAS  Google Scholar 

  20. SHI XL, YANG H, SHAO GQ, et al. Fabrication and Properties of W-Cu Alloy Reinforced by Multi-walled Carbon Nanotubes[J]. Mater. Sci. Eng., A, 2007, 457: 18–23

    Article  Google Scholar 

  21. IBRAHIM A, ABDALLAH M, MOSTAFA S F, et al. An Experimental Investigation on the W-Cu Composites[J]. Mater. Des., 2009, 30: 1 398–1 403

    Article  CAS  Google Scholar 

  22. AMIRJAN M, ZANGENEH-MADAR K, PARVIN N. Evaluation of Microstructure and Contiguity of W/Cu Composites Prepared by Coated Tungsten Powders[J]. Int. J. Refract. Met. Hard Mater., 2009, 27: 729–733

    Article  CAS  Google Scholar 

  23. SHACHAM-DIAMAND Y. Electroless Copper Deposition Using Glyoxylic Acid as Reducing Agent for Ultralarge Scale Integration Metallization[J]. Electrochem and Solid-State Lett., 2000, 3: 279–282

    Article  CAS  Google Scholar 

  24. SHACHAM-DIAMAND Y, DUBIN VM. Copper Electroless Deposition Technology for Ultra-large-scale-integration (ULSI) metallization[J]. Microelectron. Eng., 1997, 33: 47–58

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Shen  (沈强).

Additional information

Funded by the National Natural Science Foundation of China (Nos. 51202175 and 11072228) and the National 111 Project ( No. B13035)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Yu, K., Shen, Q. et al. Fabrication of W@Cu composite powders by direct electroless plating using a dripping method. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 28, 829–833 (2013). https://doi.org/10.1007/s11595-013-0777-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-013-0777-3

Key words

Navigation