Skip to main content
Log in

Influence of differential stress on the galvanic interaction of pyrite–chalcopyrite

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The effect of stress action on pyrite–chalcopyrite galvanic corrosion was investigated using polarization curves and electrochemical impedance spectroscopy (EIS) measurements. When stress increased from 0 to 4 × 105 Pa, the corrosion current density of pyrite–chalcopyrite increased from 5.678 to 6.719 μA cm−2, and the corrosion potential decreased from 281.634 to 270.187 mV, accompanied by a decrease in polarization resistance from 25.09 to 23.79 Ω·cm2. EIS results show there have three time constants in the Nyquist diagrams, which indicated the presence of different steps during the corrosion process. Stress dramatically enhanced pyrite–chalcopyrite galvanic corrosion by affecting the Cu1 − x Fe1 − y S2 film and the double layer, whereas had little impact on the adsorption species. When the stress changed from 0 to 4 × 105 Pa, the pore resistance and capacitance of the Cu1 − x Fe1 − y S2 film, R p and Q p, changed by 25.72 and 72.28 %, respectively. The adsorption species resistance, R sl, and capacitance, Q sl, only changed by 9.77 and 2.31 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Majima H, Peter E (1968) Electrochemistry of sulphide dissolution in hydrometallurgical systems. The VIII International Mineral Processing Congress. Leningrad, pp 13

  2. Metha AP, Murr LE (1983) Fundamental studies of the contribution of galvanic interaction to acid-bacterial leaching of mixed metal sulfides. Hydrometallurgy 9:235–256

    Article  Google Scholar 

  3. Ekmekçi Z, Demirel H (1997) Effects of galvanic interaction on collectorless flotation behaviour of chalcopyrite and pyrite. Int J Miner Process 52:31–48

    Article  Google Scholar 

  4. Chandraprabha MN, Natarajan KA, Somasundaran P (2005) Selective separation of pyrite from chalcopyrite and arsenopyrite by biomodulation using Acidithiobacillus ferrooxidans. Int J Miner Process 75:113–122

    Article  CAS  Google Scholar 

  5. Nazari G, Dixon DG, Dreisinger DB (2011) Enhancing the kinetics of chalcopyrite leaching in the Galvanox™ process. Hydrometallurgy 105:251–258

    Article  CAS  Google Scholar 

  6. Nazari G, Dixon DG, Dreisinger DB (2012) The role of galena associated with silver-enhanced pyrite in the kinetics of chalcopyrite leaching during the Galvanox™ process. Hydrometallurgy 111–112:35–45

    Article  CAS  Google Scholar 

  7. Berry VK, Murr LE, Hiskey JB (1978) Galvanic interaction between chalcopyrite and pyrite during bacterial leaching of low-grade waste. Hydrometallurgy 3:309–326

    Article  CAS  Google Scholar 

  8. He SH, Skinner W, Fornasiero D (1986) Effect of oxidation potential and zinc sulphate on the separation of chalcopyrite from pyrite. Int J Miner Process 80:169–176

    Article  CAS  Google Scholar 

  9. McCarron JJ, Walker GW, Buckley AN (1990) An X-ray photoelectron spectroscopic investigation of chalcopyrite and pyrite surfaces after conditioning in sodium sulfide solutions. Int J Miner Process 30:1–16

    Article  CAS  Google Scholar 

  10. Peng YJ, Grano S, Fornasiero D, Ralston J (2003) Control of grinding conditions in the flotation of chalcopyrite and its separation from pyrite. Int J Miner Process 69:87–100

    Article  CAS  Google Scholar 

  11. Javad Koleini SM, Aghazadeh V, Sandström Å (2011) Acidic sulphate leaching of chalcopyrite concentrates in presence of pyrite. Miner Eng 24:381–386

    Article  CAS  Google Scholar 

  12. Sprocati AR, Alisi C, Segre L, Tasso F, Galletti M, Cremisini C (2006) Investigating heavy metal resistance, bioaccumulation and metabolic profile of a metallophile microbial consortium native to an abandoned mine. Sci Total Environ 366:649–658

    Article  CAS  Google Scholar 

  13. Baláž P (2000) Extractive metallurgy of activated minerals, 1st edn. Elsevier, Amsterdam, pp 35–77

    Google Scholar 

  14. Tkacova K (1989) Mechanical activation of minerals, 1st edn. Elsevier, Amsterdam, pp 26–38

    Google Scholar 

  15. Boldyrev VV, Tkacova K (2000) Mechanochemistry of solids: past, present, and prospects. J Mater Synth Process 8:121–132

    Article  CAS  Google Scholar 

  16. Khilyuk LF, Chilingar GV, Robertson JO, Endres B (2000) Messages from the Earth’s crust. In Gas migration. Elsevier, Amsterdam, pp 163–187

  17. Dutrizac JE (1992) The leaching of sulphide minerals in chloride media. Hydrometallurgy 29:1–45

    Article  CAS  Google Scholar 

  18. Bailey RA, Clark HM, Ferris JP, Krause S, Strong RL (2002) The earth’s crust. In Chemistry of the environment, 2nd edn. Elsevier, Amsterdam, pp 443–482

  19. Bowell RJ, Bruce I (1995) Geochemistry of iron ochres and mine waters from Levant Mine, Cornwall. Appl Geochem 10:237–250

    Article  CAS  Google Scholar 

  20. Silva EFD, Bobos I, Matos JX, Patinha C, Reis AP, Fonseca EC (2009) Mineralogy and geochemistry of trace metals and REE in volcanic massive sulfide host rocks, stream sediments, stream waters and acid mine drainage from the Lousal mine area (Iberian Pyrite Belt, Portugal). Appl Geochem 24:383–401

    Article  CAS  Google Scholar 

  21. Gonzalez-Rodriguez JG, Mejia E, Lucio-Garcia MA, Salinas-Bravo VM, Porcayo-Calderon J, Martinez-Villaf A (2009) An electrochemical study of the effect of Li on the corrosion behavior of Ni3Al intermetallic alloy in molten (Li+K) carbonate. Corros Sci 51:1619–1627

    Article  CAS  Google Scholar 

  22. Liu JS (2002) Bioextraction and corrosion electrochemistry of sulfide minerals. Ph.D. thesis, Central South University pp. 34–38

  23. Bonora PL, Deflorian F, Fedrizzi L (1996) Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion. Electrochim Acta 41:1073–1082

    Article  CAS  Google Scholar 

  24. Nava D, Gonzalez I (2006) Electrochemical characterization of chemical species formed during the electrochemical treatment of chalcopyrite in sulfuric acid. Electrochim Acta 51:5295–5442

    Article  CAS  Google Scholar 

  25. Ghahremaninezhad A, Asselin E, Dixon DG (2010) Electrochemical evaluation of the surface of chalcopyrite during dissolution in sulfuric acid solution. Electrochim Acta 55:5041–5056

    Article  CAS  Google Scholar 

  26. Hackl RP, Dreisinger DB, Peters E, King JA (1995) Passivation of chalcopyrite during oxidative leaching in sulfate media. Hydrometallurgy 39:25–48

    Article  CAS  Google Scholar 

  27. Velásquez P, Leinen D, Pascual J, Ramos-Barrado JR, Grez P, Gómez H, Schrebler R, Rĺo RD, Córdova R (2005) A chemical, morphological, and electrochemical (XPS, SEM/EDX, CV, and EIS) analysis of electrochemically modified electrode surfaces of natural chalcopyrite (CuFeS2) and pyrite (FeS2) in alkaline solutions. J Phys Chem B 109:4977–4988

    Article  CAS  Google Scholar 

  28. Macdonald JR (1985) Generalizations of “universal dielectric response” and a general distribution-of-activation-energies model for dielectric and conducting systems. J Appl Phys 58:1971–1978

    Article  Google Scholar 

  29. Brug GJ, Van-den-Eden ALG, Sluyters-Rehbach M, Sluyters HJ (1984) The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem 176:275–295

    Article  CAS  Google Scholar 

  30. Gassa LM, Vilche JR, Ebert M, Juttner K, Lorenz WJ (1990) Electrochemical impedance spectroscopy on porous electrodes. J Appl Electrochem 20:677–685

    Article  CAS  Google Scholar 

  31. Pajkossy T (1997) Capacitance dispersion on solid electrodes: anion adsorption studies on gold single crystal electrodes. Solid State Ionics 94:123–129

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (40803017), Large-scale Scientific Apparatus Development Program of Chinese Academy of Sciences (YZ200720), and Municipal Science and Technology Foundation of Guizhou Province, China (No. 2008GZ02240), Key Technologies R & D Program of Guizhou Province, China (SY [2011] 3088), and West Light Foundation Doctor Cultivate Progress Foundation of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heping Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Zhang, Y. & Li, H. Influence of differential stress on the galvanic interaction of pyrite–chalcopyrite. Ionics 19, 77–82 (2013). https://doi.org/10.1007/s11581-012-0707-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0707-y

Keywords

Navigation