Skip to main content

Advertisement

Log in

2D versus 3D fluoroscopy-based navigation in posterior pelvic fixation: review of the literature on current technology

  • Review Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Percutaneous sacroiliac (SI) fixation of unstable posterior pelvic ring injuries is a widely accepted procedure. The complex sacral anatomy with narrow osseous corridors for SI screw placement makes this procedure technically challenging. Techniques are constantly evolving as a result of better understanding of the posterior pelvic anatomy. Recently developed tools include fluoroscopy-based computer-assisted navigation, which can be two-dimensional (2D) or three-dimensional (3D). Our goal is to determine the relevant technical considerations and clinical outcomes associated with these modalities by reviewing the published research. We hypothesize that 3D fluoroscopy-based navigation is safer and superior to its 2D predecessor with respect to lower radiation dose and more accurate SI screw placement.

Methods

We searched four medical databases to identify English-language studies of 2D and 3D fluoroscopy-based navigation from January 1990 through August 2015. We included articles reporting imaging techniques and outcomes of closed posterior pelvic ring fixation with percutaneous SI screw fixation. Injuries included in the study were sacral fractures (52 patients), sacroiliac fractures (88 patients), lateral compression fractures (20 patients), and anteroposterior compression type pelvic fractures (8 patients). We excluded articles on open reduction of posterior pelvic ring injuries and solely anatomic studies. We then reviewed these studies for technical considerations and outcomes associated with these technologies.

Results

Six studies were included in our analysis. Results of these studies indicate that 3D fluoroscopy-based navigation is associated with a lower radiation dose and lower rate of screw malpositioning compared with 2D fluoroscopy-based systems.

Conclusions

It may be advantageous to combine modern imaging modalities such as 3D fluoroscopy with computer-assisted navigation for percutaneous screw fixation in the posterior pelvis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Graves ML, Routt ML Jr (2011) Iliosacral screw placement: are uniplanar changes realistic based on standard fluoroscopic imaging? J Trauma 71(1):204–208. doi:10.1097/TA.0b013e31821e842a (discussion 208)

    Article  PubMed  Google Scholar 

  2. Baskin KM, Cahill AM, Kaye RD, Born CT, Grudziak JS, Towbin RB (2004) Closed reduction with CT-guided screw fixation for unstable sacroiliac joint fracture-dislocation. Pediatr Radiol 34(12):963–969. doi:10.1007/s00247-004-1291-8

    Article  PubMed  Google Scholar 

  3. Stöckle U, Schaser K, Konig B (2007) Image guidance in pelvic and acetabular surgery-expectations, success and limitations. Injury 38(4):450–462. doi:10.1016/j.injury.2007.01.024

    Article  PubMed  Google Scholar 

  4. Osterhoff G, Ossendorf C, Wanner GA, Simmen HP, Werner CML (2011) Percutaneous iliosacral screw fixation in S1 and S2 for posterior pelvic ring injuries: technique and perioperative complications. Arch Orthop Trauma Surg 131(6):809–813. doi:10.1007/s00402-010-1230-0

    Article  PubMed  Google Scholar 

  5. Bishop JA, Routt ML Jr (2012) Osseous fixation pathways in pelvic and acetabular fracture surgery: osteology, radiology, and clinical applications. J Trauma Acute Care Surg 72(6):1502–1509. doi:10.1097/TA.0b013e318246efe5

    Article  PubMed  Google Scholar 

  6. Carlson DA, Scheid DK, Maar DC, Baele JR, Kaehr DM (2000) Safe placement of S1 and S2 iliosacral screws: the “vestibule” concept. J Orthop Trauma 14(4):264–269

    Article  CAS  PubMed  Google Scholar 

  7. Hasenboehler EA, Stahel PF, Williams A, Smith WR, Newman JT, Symonds DL, Morgan SJ (2011) Prevalence of sacral dysmorphia in a prospective trauma population: Implications for a “safe” surgical corridor for sacro-iliac screw placement. Patient Saf Surg 5(1):8. doi:10.1186/1754-9493-5-8

    Article  PubMed  PubMed Central  Google Scholar 

  8. Miller AN, Routt ML Jr (2012) Variations in sacral morphology and implications for iliosacral screw fixation. J Am Acad Orthop Surg 20(1):8–16. doi:10.5435/jaaos-20-01-008

    PubMed  Google Scholar 

  9. Mosheiff R, Khoury A, Weil Y, Liebergall M (2004) First generation computerized fluoroscopic navigation in percutaneous pelvic surgery. J Orthop Trauma 18(2):106–111

    Article  PubMed  Google Scholar 

  10. Stöckle U, Konig B, Hofstetter R, Nolte LP, Haas NP (2001) Navigation assisted by image conversion. An experimental study on pelvic screw fixation. Der Unfallchirurg 104(3):215–220

    Article  PubMed  Google Scholar 

  11. Stöckle U, Konig B, Schaser K, Melcher I, Haas NP (2003) CT and fluoroscopy based navigation in pelvic surgery. Der Unfallchirurg 106(11):914–920. doi:10.1007/s00113-003-0677-7

    PubMed  Google Scholar 

  12. Bargar WL (2007) Robots in orthopaedic surgery: past, present, and future. Clin Orthop 463:31–36

    PubMed  Google Scholar 

  13. Bargar WL, Bauer A, Borner M (1998) Primary and revision total hip replacement using the Robodoc system. Clin Orthop 354:82–91

    Article  Google Scholar 

  14. Dorr LD, Malik A, Wan Z, Long WT, Harris M (2007) Precision and bias of imageless computer navigation and surgeon estimates for acetabular component position. Clin Orthop 465:92–99. doi:10.1097/BLO.0b013e3181560c51

    PubMed  Google Scholar 

  15. Hafez MA, Chelule KL, Seedhom BB, Sherman KP (2006) Computer-assisted total knee arthroplasty using patient-specific templating. Clin Orthop 444:184–192. doi:10.1097/01.blo.0000201148.06454.ef

    Article  CAS  PubMed  Google Scholar 

  16. Papanastassiou ID, Setzer M, Eleraky M, Baaj AA, Nam T, Binitie O, Katsares K, Cheong D, Vrionis FD (2011) Minimally invasive sacroiliac fixation in oncologic patients with sacral insufficiency fractures using a fluoroscopy-based navigation system. J Spinal Disord Tech 24(2):76–82. doi:10.1097/BSD.0b013e3181df8e6b

    Article  PubMed  Google Scholar 

  17. van den Bosch EW, van Zwienen CM, van Vugt AB (2002) Fluoroscopic positioning of sacroiliac screws in 88 patients. J Trauma 53(1):44–48

    Article  PubMed  Google Scholar 

  18. Attias N, Lindsey RW, Starr AJ, Borer D, Bridges K, Hipp JA (2005) The use of a virtual three-dimensional model to evaluate the intraosseous space available for percutaneous screw fixation of acetabular fractures. J Bone Joint Surg Br 87(11):1520–1523. doi:10.1302/0301-620x.87b11.16614

    Article  CAS  PubMed  Google Scholar 

  19. Ochs BG, Gonser C, Shiozawa T, Badke A, Weise K, Rolauffs B, Stuby FM (2010) Computer-assisted periacetabular screw placement: comparison of different fluoroscopy-based navigation procedures with conventional technique. Injury 41(12):1297–1305. doi:10.1016/j.injury.2010.07.502

    Article  PubMed  Google Scholar 

  20. Rommens PM (2007) Is there a role for percutaneous pelvic and acetabular reconstruction? Injury 38(4):463–477. doi:10.1016/j.injury.2007.01.025

    Article  CAS  PubMed  Google Scholar 

  21. Altman DT, Jones CB, Routt ML Jr (1999) Superior gluteal artery injury during iliosacral screw placement. J Orthop Trauma 13(3):220–227

    Article  CAS  PubMed  Google Scholar 

  22. Matityahu A, Kahler D, Krettek C, Stöckle U, Grutzner PA, Messmer P, Ljungqvist J, Gebhard F (2014) Three-dimensional navigation is more accurate than two-dimensional navigation or conventional fluoroscopy for percutaneous sacroiliac screw fixation in the dysmorphic sacrum: a randomized multicenter study. J Orthop Trauma 28(12):707–710. doi:10.1097/bot.0000000000000092

    Article  PubMed  Google Scholar 

  23. Peng KT, Li YY, Hsu WH, Wu MH, Yang JT, Hsu CH, Huang TJ (2013) Intraoperative computed tomography with integrated navigation in percutaneous iliosacral screwing. Injury 44(2):203–208. doi:10.1016/j.injury.2012.09.017

    Article  PubMed  Google Scholar 

  24. Sagi HC, Lindvall EM (2005) Inadvertent intraforaminal iliosacral screw placement despite apparent appropriate positioning on intraoperative fluoroscopy. J Orthop Trauma 19(2):130–133

    Article  CAS  PubMed  Google Scholar 

  25. Schep NW, Haverlag R, van Vugt AB (2004) Computer-assisted versus conventional surgery for insertion of 96 cannulated iliosacral screws in patients with postpartum pelvic pain. J Trauma 57(6):1299–1302

    Article  PubMed  Google Scholar 

  26. Templeman D, Schmidt A, Freese J, Weisman I (1996) Proximity of iliosacral screws to neurovascular structures after internal fixation. Clin Orthop 329:194–198

    Article  Google Scholar 

  27. Collinge C, Coons D, Tornetta P, Aschenbrenner J (2005) Standard multiplanar fluoroscopy versus a fluoroscopically based navigation system for the percutaneous insertion of iliosacral screws: a cadaver model. J Orthop Trauma 19(4):254–258

    Article  PubMed  Google Scholar 

  28. Starr AJ, Reinert CM, Jones AL (1998) Percutaneous fixation of the columns of the acetabulum: a new technique. J Orthop Trauma 12(1):51–58

    Article  CAS  PubMed  Google Scholar 

  29. Briem D, Windolf J, Rueger JM (2007) Percutaneous, 2D-fluoroscopic navigated iliosacral screw placement in the supine position: technique, possibilities, and limits. Der Unfallchirurg 110(5):393–401. doi:10.1007/s00113-006-1226-y

    Article  CAS  PubMed  Google Scholar 

  30. Gautier E, Bachler R, Heini PF, Nolte LP (2001) Accuracy of computer-guided screw fixation of the sacroiliac joint. Clin Orthop 393:310–317

    Article  Google Scholar 

  31. Sugano N (2013) Computer-assisted orthopaedic surgery and robotic surgery in total hip arthroplasty. Clin Orthop Surg 5(1):1–9. doi:10.4055/cios.2013.5.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hofstetter R, Slomczykowski M, Sati M, Nolte LP (1999) Fluoroscopy as an imaging means for computer-assisted surgical navigation. Comput Aided Surg 4(2):65–76. doi:10.1002/(sici)1097-0150(1999)4:2<65:aid-igs1>3.0.co;2-y

    Article  CAS  PubMed  Google Scholar 

  33. Liebergall M, Mosheiff R, Josckowicz L (2006) Computer-aided orthopaedic surgery in skeletal trauma. In: Rockwood CA, Green DP, Bucholz RW (eds) Rockwood and Green’s fractures in adults, 6th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  34. Beck M, Krober M, Mittlmeier T (2010) Intraoperative three-dimensional fluoroscopy assessment of iliosacral screws and lumbopelvic implants stabilizing fractures of the os sacrum. Arch Orthop Trauma Surg 130(11):1363–1369. doi:10.1007/s00402-009-1039-x

  35. Kim JW, Oh CW, Oh JK, Lee HJ, Min WK, Kyung HS, Yoon SH, Mun JU (2013) Percutaneous iliosacral screwing in pelvic ring injury using three-dimensional fluoroscopy. J Orthop Sci 18(1):87–92. doi:10.1007/s00776-012-0320-y

    Article  PubMed  Google Scholar 

  36. Jung KA, Kim SJ, Lee SC, Hwang SH, Ahn NK (2010) Accuracy of implantation during computer-assisted minimally invasive Oxford unicompartmental knee arthroplasty: a comparison with a conventional instrumented technique. Knee 17(6):387–391. doi:10.1016/j.knee.2009.11.003

    Article  PubMed  Google Scholar 

  37. Molfetta L, Caldo D (2008) Computer navigation versus conventional implantation for varus knee total arthroplasty: a case–control study at 5 years follow-up. Knee 15(2):75–79. doi:10.1016/j.knee.2007.12.006

    Article  PubMed  Google Scholar 

  38. Routt MLC Jr, Simonian PT, Mills WJ (1997) Iliosacral screw fixation: early complications of the percutaneous technique. J Orthop Trauma 11(8):584–589

    Article  PubMed  Google Scholar 

  39. Duwelius PJ, Van Allen M, Bray TJ, Nelson D (1992) Computed tomography-guided fixation of unstable posterior pelvic ring disruptions. J Orthop Trauma 6(4):420–426

    Article  CAS  PubMed  Google Scholar 

  40. Ebraheim NA, Coombs R, Jackson WT, Rusin JJ (1994) Percutaneous computed tomography-guided stabilization of posterior pelvic fractures. Clin Orthop 307:222–228

    Google Scholar 

  41. Zwingmann J, Konrad G, Mehlhorn AT, Sudkamp NP, Oberst M (2010) Percutaneous iliosacral screw insertion: malpositioning and revision rate of screws with regards to application technique (navigated vs. conventional). J Trauma 69(6):1501–1506. doi:10.1097/TA.0b013e3181d862db

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik A. Hasenboehler.

Ethics declarations

Conflict of interest

S. C. Thakkar, R. S. Thakkar, N. Sirisreetreerux, J. A. Carrino, B. Shafiq, and E. A. Hasenboehler declare that they have no conflicts of interest with any financial organization regarding the material discussed in this manuscript.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Funding

This study has no funding sources to declare.

Informed consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakkar, S.C., Thakkar, R.S., Sirisreetreerux, N. et al. 2D versus 3D fluoroscopy-based navigation in posterior pelvic fixation: review of the literature on current technology. Int J CARS 12, 69–76 (2017). https://doi.org/10.1007/s11548-016-1465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-016-1465-5

Keywords

Navigation